

Ministry of Tourism, Wildlife & Heritage

Sti Wildlife Scientific Conference 2023

THEME:

"Use of Wildlife Science for enhanced Biodiversity Conservation and improved Livelihoods"

Conference Essentials

About this event

Section 52 (1K) of the Wildlife Conservation and Management Act, 2013 provides for The Wildlife Research and Training Institute (WRTI) to organize symposia, conferences, workshops and other meetings to promote exchange of views on issues relating to wildlife research and training. Further, WRTI's Strategic Plan 2022-27 emphasizes on the importance of holding local and international seminars, workshops, conferences and excursions to promote dissemination and exchange of information.


In addition, the National Wildlife Strategy 2030 recommends biennial conferences in wildlife research as a priority activity to bring data and information to policy makers, managers and users for review. Further, to assist in planning and coordination with the goal of catalyzing innovation, developing new technologies and spurring investments to promote evidence-based wildlife conservation and management. Sessional paper No. 1 of 2020 on the National Wildlife Policy highlights the importance of the Government to promote the use of scientific knowledge and information in decision making. At the same time, the Government aims to develop mechanisms to ensure cross-sectoral linkages and consistent implementation of wildlife-related Multilateral Environmental Agreements (MEAs) and Sustainable Development Goals (SDGs). It is against this background that WRTI has organized its first wildlife scientific conference in Naivasha, Kenya from 26th to 28th September, 2023.

How to book https://conference.wrti.ac.ke/

Rationale

Wildlife is a key driver of the tourism industry which is the second foreign exchange earner for the country. However, since independence the wildlife sector has experienced major challenges driven by anthropogenic and environmental factors. These include climate change, human-wildlife conflicts, diseases, loss of genetic viability, poaching for trophies and bushmeat, infrastructural development and human encroachment into wildlife areas. This has led to significant wildlife population decline, loss of connectivity, habitat loss and degradation. During the same period, the wildlife sector has undergone changes in terms of policy and legislative structures as well as wildlife conservation and management strategies in major ecosystems and landscapes.

To address the above challenges and enhance the socioeconomic benefits from the wildlife resources, this inaugural wildlife scientific conference aims at bringing together conservation stakeholders and partners in line with the existing wildlife policy provisions and the Government's Bottom-up Economic Agenda. It is also expected to showcase scientific outputs, share experiences and expertise amongst scientists globally and recommend solutions to the aforementioned challenges. In addition, the Conference will act as a channel for disseminating information gathered internally and externally through wildlife research. It is envisaged that the conference will contribute into guiding policy development and decision making in the wildlife sector and therefore enhance optimized benefits from the wildlife resource to the Kenyan people and the world at large.

Conference Essentials

General Information

Venue and Dates

The WRTI 1st Wildlife Scientific Conference takes place at Lake Naivasha Resort, Naivasha - Kenya, from 26th –28th September, 2023.

Contact Address

Wildlife Research and Training Institute, Naivasha - Kenya.SecretariatMobile Number: +254 797 169 435, +254 726 490340Email:wrtiscicon2023@wrti.go.keWebsite:www.wrti.go.ke

Mobile Phone Policy

Delegates are advised to put their mobile phones either on silent mode or switched off during all conference sessions.

Language

The official language of the conference is English.

Conference registration hours

 Tuesday, 26th September, 2023:
 08.00 - 09.00 hrs

 Wednesday, 27th September, 2023:
 08.00 - 08.15 hrs

 Thursday, 28th September, 2023:
 08.00 - 08.30 hrs

Entry requirement

For international visitors to enter the country please visit <u>www.mfa.go.ke</u> for country specific information.

Lost and Found

For lost and found items, please contact the Information Desk at the registration area. However, participants are encouraged to keep their belongings safe.

Name badge

Your name badge is your entrance ticket to all sessions. Please, always remember to wear your badge throughout the conference. Participants without name badges will be denied access to conference rooms/sessions. If you lose your badge, a new one will be provided against proof of your original registration.

Wi-Fi/Internet connections

Wi-Fi will be available to all delegates. Participants will be informed of Wi-Fi access points during the conference.

Lunch and Coffee Breaks

Lunch and coffee/tea is included in the registration fee and will be served daily in the conference area.

Time Zone

The time zone is (UTC+03:00) Nairobi.

Banking

Banks and Bureau de Change are available at the airport and in all major towns. Banks are open in general from Monday to Friday between 0090 hrs and 1600 hrs, a n d Saturdays between 0900 hrs and 1200 hrs. Kindly note that banks are closed on Sundays and public holidays. ATMs with multinational financial services are available in Naivasha town.

Electricity current

The voltage in Kenya is 220 – 240 volts. The sockets require a 3 square pin plug.

Conference Essentials

 \sim

General Information

Security

Kenya is a safe country. However, like in any other country, reasonable precautions should be taken. Avoid walking alone at night and lock your valuables in your hotel safe. In case of any emergency, report to the nearest police station or call the conference secretariat Mobile Number: +254 797 169 435.

Hospitality

Kenyan people are warm-hearted and willing to help visitors.

Registration and conference payment

All participants are required to register and receive their conference materials at the registration desk. Registration will commence on **Tuesday 26th September, 2023 from 0800hrs East African time.**

Important: All participants are reminded to pay participation/ registration fees before the conference dates bavoid inconveniences. Payment details should be sent to <u>wrtiscicon2023@wrti.go.ke</u>

Jomo Kenyatta International Airport

It is located about 107 km from Naivasha town. It takes about two hours from Nairobi to Naivasha by road. Facilities available include banks, curio shops and restaurants. Cab services are available from the airport to Naivasha.

Accommodation

Naivasha town has numerous accommodation facilities ranging from five-star hotels to home-stay apartments. For assistance in booking, please contact <u>wrtiscicon2023@wrti.</u> <u>go.ke</u> or call the secretariat Mobile Number: +254 797 169 435, +254 726 490340

Weather

The weather in Naivasha during this time of the year is usually sunny and windy with temperatures ranging from 18 to 28°C.

Sight-seeing and excursions

The event venue is within reach of two Protected Areas including Hell's Gate and Mt. Longonot National Parks. However, the world renown Lake Nakuru National Park is about 70km from Naivasha. Also, within Lake Naivasha, boat safaris are organized on request by different operators. For further information, participants can contact wrtiscicon2023@wrti.go.ke or call the secretariat Mobile Number: +254 797 169 435, +254 726 490340

Location facilities

Adrress:

Lake Naivasha Resort is located along Moi South Lake Rd, just steps off the scenic Lake Naivasha **Phone:**

0713 600002; **E-mail:** reservations@lakenaivasharesort.co.ke

THE WRTI 1st WILDLIFE SCIENTIFIC CONFERENCE IN KENYA, 26TH - 28TH SEPTEMBER, 2023

DAY O1

Tuesday 26th September 2023

8.00 - 9.00

Registration – Kiboko Hall

9.00 - 11.30

Opening Ceremony – Kiboko Hall

11.30 – 12.00 Group Photo and Health Break

Presentations

12.00 - 12.45

Keynote Address One: Kiboko Hall Conservation Science and Practice for Harmonised Policy Engagement - Lucy Waruingi

.....

12.45 - 14.00

Lunch Break

14.00 - 16.50

Parallel Breakout Session 1 - Kiboko Hall

Sub-theme: Changes in wildlife population trends and dynamics

Parallel Breakout Session 1 -2-Way Hall

Sub-theme: Initiatives towards wildlife habitat restoration and connectivity

Parallel Breakout Session 1 - Acacia Hall

Sub-theme: Approaches to enhance human-wildlife coexistence in humandominated landscapes

DAY **02**

Wednesday 27th September 2023

8.00 - 8.15

Registration

8.15 - 9.00 Keynote Address Two – Kiboko Hall

Infrastructure and conservation: the nexus for policy development by Dr. Ben Okita

9.00 – 9.45 Keynote Address Three - Kiboko Hall

Ecological monitoring and community enterprises by Dr. David Western

9.45 - 10.00

Launch of National IUCN Species Specialist Group

10.00 -10.30 Health Break

10.30 - 13.00 Parallel Session 2 – Kiboko Hall

Sub-theme: Changes in wildlife population trends and dynamics

Parallel Session 2 – 2-Way Hall 2

Sub-theme: Initiatives towards wildlife habitat restoration and connectivity

Parallel Session 2 – Acacia Hall

Sub-themes: Approaches to enhance human-wildlife coexistence in humandominated landscapes, and Approaches to climate change mitigation and adaptability

13.00 - 14.00 Lunch Break

14.00 - 14.45

Keynote Address Four - Kiboko Hall

Remote Sensing and Natural Resource Surveys for Wildlife conservation and Management by Dr. Emmanuel Nkurunziza

Parallel Session 3 – 2-Way Hall	Parallel Session 3 – Acacia Hall
Sub-theme: Use of science for harmonized policy engagement	Sub-theme: Approaches to climate change mitigation and adaptability
Health Break	
Networking dinner	
	Hall Sub-theme: Use of science for harmonized policy engagement Health Break

DAY **03**

Thursday 28th September 2023

8.00 - 8.15

Registration

8.15 - 9.00 Keynote Address Five – Kiboko Hall

Regulation of wildlife research in Kenya by Prof. Walter Oyawa

9.00 - 9.15

Hall

Role of research in the implementation of EAC Wildlife Strategy by Leo Niskanen

9.15 - 10.00 Parallel Session 4 – Kiboko

Parallel Session 4 – 2-Way Hall Sub-Theme: Use of new

technology in addressing wildlife conservation challenges

Parallel Session 4 – Acacia Hall

Sub-Theme: Use of biotechnology and bioprospecting for enhanced socio-economic benefits

10.00 -10.30 Health Break

Sub-theme: Addressing

wildlife health challenges

through One Health

10.30 - 13.00

approach

Parallel Session 5- Kiboko Hall Sub-theme: Addressing

wildlife health challenges through One Health approach

Parallel Session 5- 2-Way Hall

Sub-Theme: Use of new technology in addressing wildlife conservation challenges

Parallel Session 5- Acacia Hall

Sub-Themes: Use of biotechnology and bioprospecting for enhanced socio-economic benefits, and

Use of natural capital accounting systems and payment for ecosystem service for socio-economic benefits

13.00 - 14.00 Lunch Break

14.00 - 15.30		
Parallel Session 6- Kiboko Hall	Parallel Session 6- 2-Way Hall 3	Parallel Session - 6- Acacia Hall
Sub-theme: Addressing wildlife health challenges through a One Health approach	Sub-Theme: Use of new technology in addressing wildlife conservation challenges, and Emerging alternative wildlife utilization and enterprises	Sub-Theme : Emerging alternative wildlife utilization and enterprises
Closing Ceromy		

15.30 - 16.30 Recommendations and way forward	Dr. Patrick Omondi
16.30 – 17.30 Closing Ceremony	Мс

Tuesday 26th September 2023

Opening Ceremony

DAY C

Event/Paper	Responsible/ Presenter
8.00 – 9.00 Conference Registration	Organizing committee
9.00 - 11.30 Opening ceremony	Event Organizer
11.30 – 12.00 Group Photo and Health Break	
Presentations	
10.00.10.45	

12.00 -12.45

Keynote Address One - Conservation Science and Practice for Harmonised policy engagement - Kiboko Hall

Lucy Waruingi

DAY 1- PARALLEL SESSION 1- Kiboko Hall

Sub-theme: Changes in wildlife population trends and dynamics

Moderator: Bernard Ngoru

Event/Paper	Responsible/ Presenter
14.00-14.20 Sub-theme Keynote Presentation	Prof. Joseph Ogutu
14.20–14.35 Conservation Gains, Losses and the Future of Tana River Red Colobus and Tana River Mangabeys in the lower Tana River: Analysis of Four Decades Population Trends	Stanislaus Kivai et al.
14.35- 14.50 Development of a Science-Based Integrated Metapopulation Management Plan for the Kenyan Black Rhinoceros (<i>Diceros bicornis michaeli</i>)	Cedric Khayale et al.
14.50 - 15.05 A long-term study: Lion trends and dynamics in northern Kenya	Toby Otieno et al.
15.05 - 15.20 Africa's wilderness under threat - the case of wild dogs (<i>Lycaon pictus</i>) in Kenya's Kajiado County	George Mboya et al.
15.20 – 15.35 Anthropogenic disturbance induces opposing population	Kay E. Holekamp et al.

15.35 - 15.50 Avian diversity in different forest regimes in and around North Nandi Forest, Kenya.	Mark Cheruiyot Bett et al.
15.50 - 16.05 Birds in the matrix: the role of agriculture in avian conservation in the Taita Hills, Kenya	Philista Adhiambo Malaki et al.
16.05 - 16.20 25 Years of Long-Term Elephant Monitoring in Samburu	David Letitiya et al.
16.20 - 16.35 Long-term population and demographic trends among the Amboseli elephants.	Phyllis Lee et al.
16.35 - 16.50: Q&A	

DAY 1- PARALLEL SESSION 1 – 2-Way Hall

Sub-theme: Initiatives towards wildlife habitat restoration and connectivity

Moderator: Dr. Fred Omengo

Event/Paper	Responsible/ Presenter
14.00 – 14.20 Sub-theme Keynote Presentation	Dr. Paul Matiku
14.20 – 14.35 A spatial planning framework for informing integrated biodiversity and ecosystem service conservation and restoration	Gibbon Gwili et al.
14.35 – 14.50 Infrastructure and wildlife mortality: current research and future directions	Fredrick Lala et al.
14.50 - 15.05 Can market-based mechanisms enhance connectivity of landscapes? Lessons from Kasigau Corridor, Southern Kenya.	Geoffrey Mwangi and Tom Kiptenai
15.05 - 15.20 Distribution and seasonal movements of savannah elephants, (<i>Loxodonta Africana</i>) around Lake Jipe, a function of foraging resources	Muteti Zacharia Mutinda et al.
15.20 - 15.35 How anthropogenic features and threats contribute to shape cheetah, (<i>Acinonyx jubatus</i>) activities and connectivity	Cherie Schroff
15.35 -15.50 Implementing community-based corridors to enhance wildlife connectivity	Benjamin Loloju et al.
15.50 -16.05 Key biodiversity areas: preserving wildlife diversity for a sustainable future	Paul Gacheru et al.
16.05 - 16.20 Rangeland restoration for a refugee species:re- establishment of grass cover using large scale multi-site experiments in African Savanna	Ali Abdullahi et al.
16.20 - 16.35 Socio-economic and environment sustainability outcomes of the competing land use systems in northern Tanzania.	Lucas Yamat et al.
16.35 - 16.50 Q&A	

DAY 1- PARALLEL SESSION 1 - Acacia Hall

Sub-theme:

Approaches to enhance human-wildlife coexistence in humandominated landscapes

Moderator: Dr. Festus Ihwagi

Responsible/ Presenter
Prof. Noah Sitati
Kennedy Kariuk. et al.
Lydia Tiller et al.
Sarah M. Omusula et al.
Newton Simiyu et al.
Colman Lesowapir et al.
Symon Masiaine et al.
Paul Gacheru et al.
Jeneria Lekilelei et al.
David Manoa et al.

16.50 – 17.05 Q&A

DAY **02**

Moderator: Sam Weru

Wednesday 27th September 2023

Event/Paper	Responsible/ Presenter
8.00 - 8,30	
Registration	
8.30 - 9.15	
Keynote Address Three -Infrastructure and conservation: the nexus for policy development - Kiboko Hall	Dr. Ben Okita
9.15 - 10.00	
Keynote Address Four - Ecological monitoring and community enterprises - Kiboko Hall	Dr. David Western

DAY 2- PARALLEL SESSION 2 - Kiboko Hall

Sub-theme: Changes in wildlife population trends and dynamics

Moderator: Dr. David Manoa

Event/Paper	Responsible/ Presenter
10.30 - 10.45 Modelling distribution of Kirk's dik dik (<i>Madoqua kirkii</i>) in the Greater Tsavo Ecosystem.	Fredrick Lala et al.
10.45 - 11.00 Leopards' density and putative co-occurrence with spotted hyaena in the Maasai Mara ecosystem, Kenya	Elena Chelysheva et al.
11.00 - 11.15 Ecological factors influencing large herbivore distribution (LHD) in Ruma National Park of Homa Bay County, Kenya	Luke Lukaria et al.
11.15 - 11.30 Interaction between African leopards (<i>Panthera pardus pardus</i>) and olive baboons (<i>Papio anubis</i>) in Laikipia, Kenya.	Laiyon Lenguya et al.
11.30 - 11.45 Dynamics of herbivore distribution and habitat selection in the Greater Serengeti Ecosystem, Tanzania	Hamza K Kija et al.
11.45 - 12.00 A general age and sex-structured model of wildlife population dynamics illustrated by the Mara-Serengeti topi population	Joseph Ogutu et al.
12.00 - 12.15 Distribution and abundance of migrant birds and endangered mammals within Naivasha Wildlife Sanctuary, Kenya	Peter Maina et al.
12.15 – 12.30 Past outcomes and future directions for African elephant translocations	Lydia Tiller et al.
12.30 - 12'45 Pathways to human-giraffe conflict and coexistence in eastern Kenya	Ali Abdullahi et al.
12.45 - 13.00 Q&A	

DAY 2- PARALLEL SESSION 2 - 2-Way Hall

Sub-theme: Initiatives towards wildlife habitat restoration and connectivity

Moderator: Dr. Judy Nyunja

Event/Paper Responsible/ Presenter 10.30 - 10.45 Status, conservation threats and restoration of the Julius Keyyu Tarangire-Manyara (Kwakuchinja) wildlife corridor in et al. Tanzania 10.45 - 11.00 Peter Maina et al. The extent and impacts of invasive species on Wildlife habitat productivity 11.00 - 11.15 The impact of cattle foraging on habitats by Kenyan plains Daniel zebra (Equus guagga) and Grevy's zebra (E. grevyi) Rubenstein et al. 11.15 - 11.30 The influence of elephants foraging on tree species Lynn Njuguna regeneration and abundance in Arabuko-Sokoke Forest, et al. Kenya 11.30 - 11.45 Michael Koskei et al. The role of environmental, structural and anthropogenic variables on underpass use by African savanna elephants (Loxodonta africana) in the Tsavo Conservation Area. 11.45 - 12.00 Tracking carbon allocation to unravel how mutualism and its Elizabeth Pringle breakdown affect tree dynamics in Laikipia, Kenya et al. 12.00 - 12.15 Transfrontier elephant movements in the Kidepo ecosystem: Purity Milgo evidence for connectivity across Uganda, Kenya and South et al. Sudan 12.15 - 12.30 Understanding the foraging behavior and dispersal patterns Rose Abae et al. of red colobus monkey (Priocolobus rufomitratus, Peters 1879) populations in natural and agro-ecosystems forests in Tana River Primate National Reserve, Tana River County Kenya 12.30 -12.45 Young male elephants – dispersal and exploration in Vicki Fishlock Amboseli et al. 12.45 - 13.00 Q&A

DAY 2- PARALLEL SESSION 2 - Acacia Hall

Event/Paper Responsible/ Sub-theme: Presenter Approaches to 10.30 - 10.45 enhance human-wildlife Impact of drought and development on the effectiveness of King, L. E et al. beehive fences as elephant deterrents over nine years. coexistence in humandominated landscapes 10.45 - 11.00 Late Holocene human interactions with the landscape in Stephen Rucina Eastern Africa et al. Moderator: Fredrick Lala 11.00 - 11.15 Nature and extent of human- hippopotamus conflict in Richard Busega District, North-Western Tanzania Lyamuya et al. 11.15 - 11.30 The effectiveness of bomas with wire-fencing and lights Ambrose at deterring livestock depredation and its influence on Letoluai et al. pastoralists' attitudes towards carnivore conservation. 11.30 - 11.45 Harry Williams The Elephant Queen: can a nature documentary improve tolerance for elephants? et al. 11.45 - 12.00 Q&A

Sub-theme:

Approaches to climate change mitigation and adaptability

Moderator: Fredrick Lala

Event/Paper 12.00 - 12.15 Are they the key to coral reef resilience? A temporal study from Kenya

12.15 - 12.30

Assessing the Aberdare fire incidence in Kenya: causes, impacts, and multi-stakeholder-based approaches for effective mitigation Jared Asenwa

12.30 - 12.45

Assessment of vegetation changes in Kilombe Caldera, Baringo County Kenya; Inferences from micro botanical remains and current vegetation

12.45 - 13.00 Q&A

Moderator: Dr. Joseph Mukeka

14.00 - 14.45

Keynote Address Five - Remote Sensing and Natural Resource Surveys for Wildlife conservation and Management- **Kiboko Hall**

Dr. Emmanuel Nkurunziza

Responsible/ Presenter

Said Hashim

Omar et al.

Rebecca

Muthoni et al.

DAY 2- PARALLEL SESSION 3 – Kiboko Hall

Sub-theme: Changes in wildlife population trends and dynamics

Moderator: Dr. Joseph Mukeka

Event/Paper Responsible/ **Presenter** 14.45 - 15.00 Population distribution and abundance of the Common Joseph Edebe hippopotamus, Hippopotamus amphibius in Lakes Naivasha et al. and Nakuru, Kenya 15.00 - 15.15 Rural socioeconomic trends, and not ecological Lucas Yamat competition with livestock, as a main driver of wildlife et al declines in East Africa. 15.15 - 15.30 Spatially-explicit future landscape scenarios for population Sospeter growth of the African elephant Kiambi, et al. 15.30 - 15.45 Temporal dynamics in observations of rare antelope Benard Ochieng endemic to Shimba Hills National Reserve, Kenya. et al 15.45 - 16.00

The social structure and demographic status of the lion
population in Meru National Park, Kenya.Alois Mweu et
al.**16.00 - 16.15**
Wildlife and livestock in the Samburu and Buffalo Springs
National Reserves: insights from 17 years of monitoringGiacomo
D'Ammando
et al.

16.15 - 16.30

Lion (Panthera leo) monitoring and community conservation Kasaine Sankan within the greater Mara ecosystem et al.

16.30 - 16.45 Q&A

DAY 2- PARALLEL SESSION 3 - 2-Way Hall

Sub-theme: Use of science for harmonized policy engagement

Moderator: Dr. George Njagi

Event/Paper Responsible/ Presenter 14.45 - 15.00 Judith Nyunja Assessment of management effectiveness of the greater Mara and Mara Triangle conservation area: the case of Masai Mara national reserve, Siana, Oloisukut, and Ikinyei conservancies Frida D. Obare 15.00-15.15 et al Comparative analysis of wildlife governance approaches in African countries 15.15 - 15.30 Anthony Macharia et al. Evidenced-based decision support for guiding biodiversity conservation strategies associated with urban growth and infrastructural development in East Africa. 15.30 - 15.45 Paul Gacheru et al Mainstreaming of birds conservation into energy sectorlessons in engaging in energy issues in Kenya 15.45 - 16.00 Betty Rono et al. Morally contested conservation: Use of science for effective and inclusive policy implementation

Event/Paper

16.00 - 16.15

The greater Mara monitoring framework: a practical model for linking scientific evidence to management and policy needs

16.15 – 16.30 Q&A

DAY 2- PARALLEL SESSION 3 - Acacia Hall

Sub-theme:

Approaches to climate change mitigation and adaptability

Moderator: Dr. Mohammed Said

Event/Paper	Responsible/ Presenter
14.45 - 15.00 Sub-theme Keynote Presentation	Prof. Daniel Olago
15.00 - 15.15 Impacts of a severe drought on the Samburu elephants	David Daballen et al.
15.15 - 15.30 Developing drought mitigation measures for elephants in the Tsavo ecosystem by understanding long-term elephant distribution and mortality patterns in relation to NDVI, vegetation, and rainfall.	David Kimutai et al.
15.30-15.45 Effects of climate change on elephants population in Amboseli National Park in Kenya	Lynnette Mwari Kiboro et al.
15.45 - 16.00 A million-year vegetation history and palaeoenvironmental record from the Lake Magadi Basin, Kenya Rift Valley	Kinyanjui, Rahab
16.00 - 16.15 Modeling trends and variation in rainfall, temperature, NDVI, SOI and DMI in the Greater Mara-Serengeti Ecosystem: implications for biodiversity dynamics and conservation	Veronica Muirun
16.15 – 16.30 Potential impacts of climate change on wildlife protected areas, a case study of Maasai Mara National Game Reserve	Laban K. Rotich et al.
16.30 - 16.45 Vulnerability assessment of <i>Chondrichthyan</i> species to fisheries in coastal Kenya: implications for conservation and management	Benedict Kiilu et al.
16.30 - 16.45 Q&A	

Responsible/ Presenter

Holly T. Dublin et al.

Thursday 28th September 2023

Moderator: Dr. Vincent Obanda	Event/Paper	Responsible/ Presenter
	8.00 - 8.15 Registration	
	8.15 – 9.00 Keynote Address Six – Regulation of wildlife research in Kenya- Kiboko Hall	Prof. Walter Oyawa
	9.00 - 9.15 Role of research in the implementation of EAC Wildlife Strategy	Leo Niskanen

DAY 3- PARALLEL SESSION 4 – Kiboko Hall

DAY **03**

Sub-theme: Addressing wildlife health challenges through One	Event/Paper	Responsible/ Presenter
	9.15 – 9.30 Sub-theme Keynote Presentation	Prof. Eddy Mogoa
Health approach Moderator: Dr. David Ndeereh	9.30 - 9.45 Recurrent anthrax outbreaks in humans, livestock and wildlife in the same locality, Kenya (2014-2017)	Matthew Muturi et al.
	9.45 - 10.00 Evaluating temporal patterns of anthrax outbreaks in Kenya's wildlife and the control measures instituted to control and prevent anthrax events in the country	Francis Gakuya et al.

DAY 3- PARALLEL SESSION 4 – 2-Way Hall

Sub-theme: Use of	Event/Paper	Responsible/ Presenter
new technology in addressing wildlife	9.10 – 9.30 Sub-theme Keynote Presentation	Dr. Jack Wall
Conservation challenges Moderator: Wycliffe Mutero	9.30 - 9.45 Compatibility of livestock and wildlife in human occupied rangelands: using traditional pastoralism to enhance conservation of lions in their wild prey in Laikipia, Kenya	Annabella Helman et al.
	9.45 – 10.00 Combining technologies to examine human-lion interactions across scales for improved coexistence	Lucrecia K. Aguilar et al.

DAY 3- PARALLEL SESSION 4 – Acacia Hall

Sub-theme: Use of biotechnology and bio-prospecting for enhanced socio-economic benefits

Moderator: Pricilla Mutungi

Event/Paper	Responsible/ Presenter
9.10 – 9.30 Sub-theme Keynote Presentation	Prof. Marion Mutugi
9.30 - 9.45 A New Gem: Steganotaenia araliacea, a new host plant for edible Bunaea alcinoe larva in Yatta plateau, Machakos, Kenya.	Alex Mutinda et al.
9.45 - 10.00 Bioprospecting for Thermophilic break-down of keratin- laden biomass waste	Francis Mulaa et al.

DAY 3- PARALLEL SESSION 5 - Kiboko Hall

Sub-theme: Addressing
wildlife health
challenges through One
Health approach

Moderator: Dr. David Ndeereh

Event/Paper	Responsible/ Presenter
10.30 - 10.45 Behavior and parasitism in a wild baboon population	Mercy Akinyi et al.
10.45 -11.00 Evidence of co-exposure with <i>Brucella</i> spp, Coxiella burnetti and Rift Valley fever virus among various species of wildlife in Kenya	James Akoko et al.
11.00 - 11.15 Conservation of lions in Samburu through improving domestic carnivore welfare	Solomon Lenasalia et al.
11.15 – 11.30 Gastrointestinal nematodes and physiology at the Livestock- Wildlife Interface in Kenya	Alice Burton et al.
11.30 - 11.45 Gastrointestinal parasite dynamics at the livestock-wildlife interface in Laikipia, Kenya	Andrew Halls et al.
11.45 - 12.00 Non-invasive assessment of ovarian activity in free-ranging eastern Black Rhinoceros (<i>Diceros bicornis michaeli</i>) in Kenya	Maureen Kamau et al.
12.00 - 12.15 Assessment of heavy metal contaminants in Nkenye Stream in Meru south – Kenya.	Samson Chabari et al.
12.15 – 12.30 A One Health approach to engaging communities better in long term elephant conservation.	Belinda Omollo et al.
12.30 - 12.45 Southern white rhino gifts to Aitong, Kenya - fly in the ointment?	Richard Kock et al.
12.45 - 13.00 Q&A	

DAY 3- PARALLEL SESSION 5 – 2-Way Hall

Sub-theme: Use of	Event/Paper	Responsible/ Presenter
new technology in addressing wildlife conservation challenges	10.30 – 10.45 Flooding of Lake Nakuru National Park and its effects on the resident wildlife	Peter Hongo et al.
	10.45 - 11.00	
Moderator: Joseph Edebe	Hippopotamus suitable habitat analyse in the Pendjari biosphere reserve using remote sensing and GIS tools	GRM Adouke et al.
	11.00 - 11.15	
	Impacts of the Loisaba Conservancy rhino fence on the behavior of other wildlife species	Rita Orahle et al.
	11.15 - 11.30	
	Enhancing Mapping of Illegal Wildlife Trade Hotspots in Kenya: Integrating Market Survey and Confiscated Wildlife Meat Analysis	Antoinette Miyunga et al.
	11.30 - 11.45	
	Introducing a new HEC toolbox and trainer of trainers workshops to enhance human-elephant co-existence.	Ewan Brennan et al.
	11.45 - 12.00	
	Keeping watch on Olgulului Ololarashi group ranch, Amboseli, Kenya	Wycliffe Mutero et al.
	12.00 - 12.15	
	Leveraging AI and satellite to push the boundary of wildlife survey technologies	Tiejun Wang et al.
	12.15 - 12.30	
	Photo Identification as a tool to study sea turtle populations in Kenyan Marine Protected Areas	Leah Mainye et al.
	12.30 - 12.45 Q&A	

DAY 3- PARALLEL SESSION 5 - Acacia Hall

Sub-theme i: Use of biotechnology and bio-prospecting for enhanced socioeconomic benefits ii) Emerging alternative wildlife utilization and enterprises

Moderator: Priscilla Mutungi

Event/Paper	Responsible/ Presenter
10.30 - 10.45	
Effective access and benefit sharing systems key for wildlife conservation and livelihoods improvement.	Mukonyi Kavaka et al.
10.45 - 11.00	
Promoting a new species of Cotesia as a first biological control agent against the Mediterranean corn borer, an expanding pest	Calatayud Paul- André et al.
11.00 - 11.15	
The use of cryopreservation in species conservation: Nature's SAFE The Living Biobank.	Susan Walker et al.
11.15 - 11.45	
Community perceptions on the enhancement of avitourism activities in Arabuko Sokoke Forest in Kilifi County, Kenya.	Jairus Koki et al.
11.45 - 12.00 Q&A	

Sub-theme ii: Use
of natural capital
accounting systems and
payment for ecosystem
service for socio-
economic benefits

event/Paper	Responsible/ Presenter
12.00 – 12.20 Sub-theme Keynote Presentation	Bernard Opaa
12.20 -12.35 Implementing payment for ecosystem services scheme in Kenya: The case of Lake Naivasha Basin.	Weru Sammy et al.
12.35 - 12.50 Dakatcha woodland ecosystem service assessment	Paul Gacheru et al.
12.50 - 13.00 Q&A	

DAY 3- PARALLEL SESSION 6 - Kiboko Hall

Sub-theme i:	Event/Paper	Responsible/ Presenter
Addressing wildlife health challenges through One Health	Jes Seroprevalence of Neospora caninum in spotted hyena Mars	Marsden Onsare et al.
approach	14.15 - 14.30 The physiological condition of orphaned African elephants	Jenna Parker et al.
Moderator: Dr. Francis Gakuya	14.30 – 14.45 Variability in water quality parameters within Kenyan Rhino areas and potential toxicity from water uptake.	Fred Omengo et al.
	14.45 - 15.00 Using a One Health Approach to address Wildlife Disease Challenge	Marilyn Karani et al.

15.00 - 15.15 Q&A

DAY 3- PARALLEL SESSION 6 – 2-Way Hall

Sub-theme: Use of new technology in addressing wildlife conservation challenges ii) Emerging alternative wildlife utilization and enterprises Moderator: Dr. Daniel Chai	Event/Paper	Responsible/ Presenter
	14.00 - 14.15 Post-release behavior of rehabilitated and released elephant calves in Sera Rhino Sanctuary, Kenya	Lemerketo Samuel Loidialo et al.
	14.15 - 14.30 Real-time water quality monitoring using innovative Wireless Sensor Network technology: A pilot study in Lake Nakuru, Kenya	Kipkemboi J et al.
	14.30-14.45 Status of animal forensics in Kenya with focus on wildlife	George E. Otianga Owiti
	14.45-15.00 Using GPS tracking data to assess elephant movement in relation to risk	Festus Ihwagi et al.
	15.00 - 15.15 No-Take or Regulated-Take?	Said, Hashim Omar et al.
	15.15 -15.30 Q&A	

DAY 3- PARALLEL SESSION 6 - Acacia Hall

Sub-theme: Emerging alternative wildlife utilization and enterprises Moderator: Mukonyi Kavaka	Event/Paper	Responsible/ Presenter
	14.00 -14.20 Sub-theme Keynote Presentation	Dr. Daudi Sumba
	14. 20 -14.35 Inventory of wild mushrooms from Central and Nairobi regions in Kenya	Susan Kabacia et al.
	14.35 - 14.50 Nature-based tourism in the era of climate change challenges faced by national parks in arid and semi-arid environments	Kaitano Dube et al.
	14.50 - 15.05 Socio-economic benefits and advantages for households living in the "W" Transboundary Biosphere Reserve in Benin (WTBR): Necessity to improve the eco-development contribution of natural resources	Azizou EL-HAD ISSA et al.
	15 05 – 15.20 Women's enterprise and empowerment helps to foster tolerance for elephants	Esther Serem et al.
	15.20 - 15.30 Q&A	
CLOSING CEREMO	NY	
15.30 - 16.30	Recommendations and Way forward Dr. Patrick Omc	ondi

15.30 - 16.30	Recommendations and Way forward	Dr. Patrick Omondi
16.30 - 17.30	Closing Ceremony	МС

Abstracts DAY O1 Tuesd

Tuesday 26th September 2023

Sub-Theme: Changes in Wildlife Population Trends And Dynamics

Conservation Gains, Losses and the Future of Tana River Red Colobus and Tana River Mangabeys in the lower Tana River in Kenya: Analysis of Four Decades Population Trends.

¹Kivai SM, ²Mohammed O, ¹Peter FN, ¹Kabasa PM, ²Abae R, ⁴Gacheru P, ¹Otoli P, ³Churo A, ¹Kivasu CM ¹Kenya Institute of Primate of Research (KIPRE), ²Kenya Wildlife Research & Training Institute (WRTI), ³Kenya Wildlife Services (KWS), ⁴Nature Kenya

Corresponding author email address: skivai@primateresearch.org

Abstract

The Tana River Red colobus (Pilicolobus rufomitratus) and the Tana River mangabey (Cercocebus galeritus) have prominently feature among the Top 25 World most endangered primates. The species are currently listed as critically endangered by the IUCN and nationally are captured in schedule six of the Kenya Wildlife Conservation and Management Act 2013. These monkeys continue to face the eminent risk of extinction as a result of unprecedented degradation, fragmentation and loss of their habitat. Since the start of active conservation and protection of the species in early 1980, little progress has been made in their population recovery, but instead the numbers have continued to decline. Here we focused on data from recent and past census surveys, completed and ongoing conservation initiatives to analyze the population trends, conservation efforts, challenges, lessons learnt over the last four decades and draw appropriate recommendations to inform the future conservation efforts of species. Our findings

suggest that both the Tana River red colobus and the Tana River mangabey population has decline by over 50% since 1980 and effective reproducing population is less than 1000 individuals. Over 70% of their primary habitat has been lost. Local community conservation politics and negative attitudes towards conservation have impeded conservation effort for close to three decades. Increased conservation awareness and outreach in last one decade have yielded positive results and local communities are now for pro-conservation, which has resulted to creation of local community conservancies enhancing the protection and conservation of the two primates. Community education, research focused in addressing the primary threats facing the two monkey species, development and implementation of the species national action plans and coordinated partnership among conservation stakeholders in lower Tana River remain critical for the future survival of these two endemic and critically endangered primates.

Keywords: Conservation, Mangabey, Population trends, Tana River, Red colobus,

Development of a Science-Based Integrated Metapopulation Management Plan for the Kenyan Black Rhinoceros (Diceros bicornis michaeli)

¹Cedric Khayale; ²Bradley Cain; ³Raj Amin; ²Martin Jones; ⁴Susan L Walker; ⁴Katie L Edwards ⁵Martin Mulama

- ¹ Wildlife Research and Training Institute, P.O. Box 842-20117 Naivasha, Kenya
- ² Manchester Metropolitan University Chester Street Manchester M1 5GD
- ³ Zoological Society of London Regent Park London NW1 4RY United Kingdom

⁴ Chester Zoo, Upton-by-Chester, CH2 1LH, UK

⁵WWF – Kenya P. O. Box 62440, Nairobi – Kenya 00200

Corresponding author email address: ckhayale@wrti.go.ke

Abstract

The conservation of threatened species in the face of increasing human population pressure and habitat fragmentation, necessitates active metapopulation management. Translocations play a crucial role in enhancing gene flow among populations. In the eastern subspecies of the black rhinoceros (*Diceros bicornis michaeli*) in Kenya, translocations are vital for maintaining population growth, genetic diversity, and offsetting the effects of small population size. However, the success rates of translocations and their impact on reproductive output and physiological well-being remain unclear.

This study aims to develop a science-based metapopulation plan to promote growth and recovery of the Black rhinoceros. The research evaluates factors mediating translocation success, including mortality rates, reproductive rates, and physiological measures in source and recipient populations. It further investigates the impact of stress and distress on translocated individuals by examining multiple biomarkers from different physiological systems. The research utilizes existing rhino monitoring data in Kenya to analyze the relationship between translocation outcomes and various covariates across the black rhinoceros metapopulation. The study also explores the relationship between population density, ecological carrying capacity, and reproductive performance. By addressing factors such as stress, genetic restoration, and reproductive potential, the study will provide evidence-based guidelines for translocation practices, optimal population growth rates, and the maintenance of genetic diversity for the Kenyan black rhinoceros and other threatened species.

Keywords: Black Rhinoceros, Reproduction, Stress, Translocation

A long-term study: Lion trends and dynamics in northern Kenya

Otieno, T¹., Wachira, M¹., Galhaile, J and Letoiye, D¹ ¹Ewaso Lions, Corresponding author email address: toby@ewasolions.org

Abstract

Lion, Panthera leo, numbers have declined by approximately 43% over the past 20 years across Africa. In Kenya, there are ~2,489 lions in both protected and unprotected areas. Habitat loss and conflict with humans has largely contributed to their decline. Anthropogenic factors have an impact on the demography of lion populations, whether they exist inside or outside protected areas. If suitable habitat does not exist within the human-occupied landscape, then there would be reduced immigration of new males, longer pride tenures within protected areas and the potential risk of inbreeding. Conflict mitigation measures and community-led programmes are important in reducing human-lion conflict and promoting coexistence. The demography of the lion population in the Samburu-Isiolo ecosystem has been studied since 2002 to provide data on the area's basic lion population structure. Due to the small size of the protected areas within the study area, it was expected that lions would frequently move outside the reserves into the surrounding human-occupied landscapes and, therefore, their

ranging behaviour was also assessed through the use of collars and direct sightings. Conflict is recorded when it occurs to learn about hotspots and trends. This study provides the first population insights into lions within the Samburu-Isiolo ecosystem; considering both the protected areas and the surrounding human-occupied landscape. Results show an increasing lion population, with increased tolerance amongst communities. Key habitats for lions were identified through the landscape. Knowledge on the demographic status of lions is essential in understanding how populations change, especially within the anthropogenic landscape, as exposure to anthropogenic threats, especially human caused mortality on boundaries of protected areas can lead to changes in lion demography. It is important to understand how lion population demography may respond to human caused mortality especially in small protected areas, and how community tolerance can affect their trends and dynamics.

Keywords: conflict, lion, population, Samburu, trend

Africa's wilderness under threat – the case of wild dogs (Lycaon Pictus) in Kenya's Kajiado County

George Mboya¹ and Parita Shah¹

¹Department of Geography, Population and Environmental Studies, University of Nairobi Corresponding author email address: <u>georgemboyah@gmail.com</u>

Abstract

Africa's wildlife species have been subjected to high level threats affecting their numbers. Poaching, climate change, habitat loss and degradation are some of the threats that have negatively impacted Africa's iconic wild species like elephants (*Loxodonta*), rhinos (*Rhinocerotidae*), lions (*Panthera leo*), cheetahs (*Acinonyx jubatus*) and the wild dogs (*Lycaon pictus*). This study focuses on African wild dog (*Lycaon pictus*), the threats to it and interaction with humans and livestock in the non-protected areas of Kajiado County. The research was conducted in Keekonyokie ward of Kajiado west constituency where there have been numerous sightings of wild dogs. A sample size of 30 respondents was selected from four areas of the expansive Keekonyokie ward which are; Leshuta, Loodariak, Oltepesi and Ilmasin. Questionnaires were administered to the respondents and the results analyzed through SPSS. The findings revealed that there were significant numbers of wild dogs (*Lycaon pictus*) based on numerous sightings and pack sizes. The study also revealed that not all respondents were aware of the African wild dog (*Lycaon pictus*) 'Endangered' status and 76.7% were not in favor of conserving the species due to constant predatory attacks on their livestock. The study recommends awareness campaigns highlighting the role of the species in maintaining ecosystem health, tourism and education and conservation measures be undertaken by stakeholders like Kenya Wildlife Service (KWS) and other nonstate actors to prevent decline of wild dogs (*Lycaon pictus*).

Keywords: Threats, wild dogs, habitats, endangered.

Anthropogenic disturbance induces opposing population trends in spotted hyenas and African lions

Kay E. Holekamp^{1,2,3} Malit Ole Pioon^{1,2} & David S. Green^{1,2} ¹Mara Hyena Project ²Michigan State University Corresponding author email address: holekamp@msu.edu

Abstract

Large carnivore populations are declining worldwide due to direct and indirect conflicts with humans. Protected areas are critical for conserving large carnivores, but increasing humanwildlife conflict, tourism, and human population growth near these sanctuaries may have negative effects on the carnivores within sanctuary borders. Our goals were to investigate how anthropogenic disturbance along the edge of the Masai Mara National Reserve, Kenya, influences the demography and space-use of two large carnivore species that engage in intense interspecific competition. Here we document, in one disturbed region of the Reserve, a rapid increase in the population size of one large predator, the spotted hyena (*Crocuta crocuta*), but a striking concurrent decline in numbers of another, the African lion (*Panthera leo*). Anthropogenic disturbances negatively affected lion populations, and decreasing lion numbers appear to have a positive effect on hyenapopulations, indicated here by an increase in juvenile survivorship. We also saw an increase in the number of livestock consumed by hyenas. Our results suggest human population growth and indirect effects of human activity along Reserve boundaries may be causing a trophic cascade inside the Reserve itself. These results indicate both top-down and bottom-up processes are causing a shift in the carnivore community, and a major disruption of guild structure, inside the boundaries of one of the most spectacular protected areas in Africa.

Keywords: Anthropogenic disturbance, Demography, Hyenas, Lions, Masai Mara

Avian diversity in different forest regimes in and around North Nandi Forest, Kenya

Mark Cheruiyot Bett*

Training Division (Wildlife Management), Wildlife Research and Training Institute, Kenya,

Corresponding author email address: mbett@wrti.go.ke

Abstract

Forest fragmentation and degradation leads to formation of modified habitats whose ability to support existing avifaunal diversity is still largely unknown. The main aim of the study was to assess avian species diversity in four forest regimes on the Eastern side of North Nandi Forest; indigenous forest, disturbed forest, plantation forest and farmland. Birds were surveyed using point counts, timed species counts; distance line transects and mist nets. Shannon-Weiner diversity index H' for bird community ranged from 3.060 for plantation forest to 4.053 in disturbed forest. Bird species richness was significantly different in the four forest regimes surveyed (χ^2 =26.747, df=3, P<0.0001). There was also significant difference in bird abundance across the four study areas (F=15.141, df=3, 1121, P<0.0001). PCA multivariate analysis revealed that two variables; diameter at breast height and ground cover with eigen values >1 were

Keywords: Diversity, Richness, Abundance, Forest regimes

strongly correlated with habitat structure in all the four areas and explained 73.2% of the total variance. Linear regression analysis revealed a significant difference between bird species richness and tree diameter at breast height (F=99.760 r²=0.73, df=1, 1268, P<0.0001) and tree height (F=97.134 r²=0.71, df=1, 1268, P<0.0001). Bird abundance also revealed a significant difference with diameter at breast height (F=77.654 r²=0.58, df=1, 1268, P<0.0001) and tree height (F=68.163 r²=0.51, df=1, 1268, P<0.0001). Overall, the results indicate that disturbed forest and indigenous forest support high bird species richness than plantation forest and farmlands. However, high bird abundance was observed in farmlands and plantation forest as opposed to indigenous forest and disturbed forest as they provide dispersal routes over a short distance and are important for creating corridors between primary forests.

Birds in the matrix: the role of agriculture in avian conservation in the Taita Hills, Kenya

Dr. Philista Adhiambo Malaki, National Museums of Kenya

Corresponding authors email address: phillistamalaki@gmail.com or pmalaki@museums.or.ke

Abstract

Agricultural conversion of tropical forests is a major driver of biodiversity loss. Slowing rates of deforestation is a conservation priority, but it is also useful to consider how species diversity is retained across the agricultural matrix. Here we assess how bird diversity varies in relation to land use in the Taita Hills, Kenya. We used point counts to survey birds along a land-use gradient that included primary forest, secondary vegetation, agroforest, timber plantation and cropland. We found that the agricultural matrix supports an abundant and diverse bird community with high levels of species turnover, but that forest specialists are confined predominantly to primary forest, with the matrix dominated by forest visitors. Ordination analyses showed that representation of forest specialists decreases with distance from primary forest. With the exception of forest generalists, bird abundance and diversity are lowest in timber plantations. Contrary to expectation, we found feeding guilds at similar abundances in all land-use types. We conclude that while the agricultural matrix, and agroforest in particular, makes a strong contribution to observed bird diversity at the landscape scale, intact primary forest is essential for **maintaining this diversity**, **especially among species of conservation concern.**

Keywords: Birds, diversity, agriculture, forest, gradient

25 Years of Long-Term Elephant Monitoring in Samburu

David Letitiya¹, David Lolchuraki¹, David Daballen¹, Iain Douglas-Hamilton¹, and George Wittemyer² ¹Save the Elephants, Nairobi, Kenya.

²Colorado State University, Fort Collins, Colorado, USA.

Corresponding author email address: <u>G.Wittemyer@colostate.edu</u>

Abstract

Where possible, individual based monitoring of wildlife populations can provide detailed information on population ecology, demography and behavior. African elephants can be individually identified and recognized where they are visible from vehicles, making them a good species for individual based monitoring. We identified over 1000 individuals in the Samburu and Buffalo Springs National Reserves in northern Kenya and have been following them for the past 25 years. Here we summarize the population trends we have recorded over that time. About half the population uses the reserves regularly (seen in the reserve at least four months per year), while the other half are more sporadic visitors to the park. Focusing on the regular visitors, we summarize the trends in births, deaths, immigration and emigration over 25 years. This gives us detailed information on years when the population increased and decreased. Overall reproductive driven growth among the best known individuals has led to a near doubling in size over the 25 years of monitoring, despite substantial declines coinciding with the period of high poaching between 2009-2014. The population is currently increasing.

Long-term population and demographic trends among the Amboseli elephants of Kenya

Cynthia Moss, Director, Amboseli Elephant Research Project **Phyllis Lee,** Director of Science, Amboseli Elephant Research Project* Norah Njiraini, Field Researcher and Training Coordinator, Amboseli Elephant Research Project Katito Sayialel, Field Researcher and Logistics manager, Amboseli Elephant Research Project Corresponding author email address: pclee@elephanttrust.org

Abstract

The Amboseli region of Kenya contains a small, well-protected elephant population (Loxodonta africana) where life histories based on individual recognition have been tracked since 1972. This population increased gradually from ~600 to over 1800. Using regular resightings of individuals, we have tracked life histories of ~3900 elephants (1936 males, 1971 females). Our ongoing population monitoring uses monthly re-sighting of individuals, with 100% annual re-sightings for females in ~65 families (0-12 sightings per month, median = 3.25), and 87% annual re-sightings for 405 independent adult males (median = 8.8 sightings per year). We present population trends over 50 years, illustrating the effects of droughts (n = 20) where grass growth and food biomass was limited. Droughts are associated with high mortality among the youngest and oldest age classes, suppressed conception probabilities and a reduction in the likelihood of male musth.

Demographic data derived from regular sightings consist of births to known females, with an accuracy of ±1 month for 79.6% of births among 1901 animals alive at the end of 2022; deaths, either observed when carcasses were located, or inferred through the disappearance of a female or calf when the rest of the family was subsequently seen. Carcass identity, age and sex were based on known ear attributes, body size and genitalia. Some males (n = 20) were known to have dispersed from the population after ~15 years of age, and a few known males (n ~30) have been re-sighted after periods of 5 to 8 years away. Typically, these re-sightings occurred when the males were in the sexually active state of musth. The short and long-term consequences of marked population perturbations need to be considered in general population models for elephants that are subject to environmental uncertainty, competition with livestock and other wildlife, or human-induced mortality.

Keywords: Climate change; elephant demography; elephant survivorship; population dynamics

Sub-theme: Initiatives towards Wildlife Habitat Restoration and Connectivity

A spatial planning framework for informing integrated biodiversity and ecosystem service conservation and restoration across terrestrial Kenya

Gwili Gibbon

DICE at the University of Kent and African Parks Network Corresponding author email address: <u>gwilig@africanparks.org</u>

Abstract

Spatial planning that integrates this with biodiversity conservation and broader land-use planning can benefit biodiversity, ecological processes, human health, wellbeing and wider society. Systematic conservation planning is a comprehensive, transparent, and repeatable approach for designing ecological networks, finding priority areas to meet conservation targets whilst maintaining connectivity and minimizing cost. We used this approach to identify where best to locate zones for conservation and restoration in Kenya to meet area-based targets for 36 vegetation types and 127 important species. We also compared the results from 10 scenarios, based on specifying that increasingly large patches of natural habitat should be excluded from the conservation zone and targets met instead by restoring larger patches elsewhere. We then compared the outputs based on their financial cost, land area, patch characteristics, and overlap with human populations and carbon and water services. Kenya's protected areas cover 19% of its land and meet a third of habitat and species targets.

Additional sites were needed to meet representation gaps, requiring conservation attention on 29% and restoration on 6% of Kenya, overlapping with a seventh of total carbon and 80% of total clean water. The scenarios show that the estimated management cost for this ranged from \$7.73 to \$9.41 billion, with the cost of restoration three orders of magnitude more expensive than conservation. Restoring land to reduce habitat fragmentation, instead of conserving small vegetation patches, increased mean patch size by up to 800% but also increased costs, land area, and the number of affected people. Targeted interventions would meet draft CBD policy commitments for area-based conservation and other restoration commitments. This has unprecedented implications for the 12-13 million people living in these areas. If incentivised and implemented equitably, this is a chance to mainstream biodiversity within these communities for the benefit of both the planet and its people.

Keywords: biodiversity conservation, ecosystem restoration, landscape connectivity, systematic conservation planning.

Infrastructure and wildlife mortality: Current Research and Future Directions

Fredrick Lala¹, Patrick Chiyo² and Joseph Bump³ ¹Wildlife Research and Training Institute, ²Trace Forensics, Uganda ³University of Minnesota, USA Corresponding author email address: <u>flala@wrti.go.ke</u>

Abstract

Maintaining the connectivity of ecosystems and wildlife populations is increasingly becoming a global challenge as growth in infrastructure to meet growing human population needs and development transverse radiationally pristine wildlife ecosystems and areas protected for nature conservation. The survival of wildlife species in nature requires interconnected landscapes where animal movement is unhindered as it enhances the genetic and ecological viability of wildlife populations. Major infrastructural developments such as multi-lane highways and railways can sever wildlife movement often with negative consequences. Currently in East Africa there are several major infrastructure development corridors that are planned or in progress. These projects will transverse the continent passing through remote regions and key ecosystems that sustain high levels of biodiversity. The global and regional impacts of rail and roadkill are significant. Animal-vehicle collisions also have a direct impact on humans via accidents and insurance claims for wildlife-vehicle collisions and can also indirectly

decrease tourism due to frequent roadkill encounters. In some areas, roadkill has surpassed hunting as the leading cause of anthropogenic wildlife mortality. Wildlife crossing structures, underpasses and "fauna passages" are, critical tools for maintaining landscape connectivity in areas affected by these developments and their capacity to sustain wildlife populations. Here we highlight current research aimed at understanding the differential and varied impacts of infrastructure on a diverse wildlife community, and how "green infrastructure designs" are addressing some problems in the East African context. Recent research has identified hotspot and drivers of wildlife roadkill and has highlighted how a different wildlife species respond to or are affected by "green infrastructure designs". Analyses of traffic flow patterns and retrospective studies are ongoing to understand the impact of infrastructure on ecology and behavior of flagship species. From recent and ongoing work, upgrade of existing infrastructure and incorporation of "green technologies" in planned infrastructure is recommended.

Can Market-based Mechanisms Enhance Connectivity of Landscapes? Lessons from Kasigau Corridor, Southern Kenya

Geoffrey Mwangi and Tom Kiptenai Wildlife Works Corresponding author email address: <u>geoffrey.wambugu@wildlifeworks.com</u>

Abstract

Market-based solutions such as Reducing Emissions from Deforestation and Forest Degradation (REDD+) have been implemented in many global south countries since the onset of the mechanism in 2007. The mechanism incentivizes forest protection through a system of credits based on the amount of forest biomass protected that would otherwise have been lost through deforestation. The Kasigau corridor connects the southern sectors of Tsavo East and West National Parks, allowing dispersal of wildlife from the parks and enhancing connectivity between the two national parks. Prior to the implementation of the Kasigau Corridor REDD+ project in 2010, the communities practiced cattle ranching, slash and burn agriculture and charcoaling. These activities were attributed to the degradation and loss of the natural Acacia / Commiphora habitat characteristic of the Kasigau corridor, which is contiguous with the Tsavo ecosystem. We assessed the

impact of corridor protection through the REDD+ mechanism on habitat connectivity in Kasigau corridor, southern Kenya. We developed remote sensing-based land cover classifications and post-classification connectivity analysis, by using data from Landsat's medium resolution sensors Thematic Mapper and Operational Land Imager to assess land use changes and the shift in landscape configuration in Kasigau corridor during the last 11 years. Percentage deforestation reduced cumulatively by 39.9% between 2010 and 2022. The area under Acacia / Commiphora forest and high montane forest significantly increased, while the area under grassland and sparse shrubs reduced. However, fire threats have increased due to availability of biomass fuel, prolonged drought and isolated incidences of charcoal burning. Market solutions, if well implemented, have the potential to improve connectivity of habitats.

Distribution and Seasonal Movements of Savanna Elephants (*Loxodonta Africana*) Around Lake Jipe, A Function of Foraging Resources

Muteti Zacharia Mutinda¹², Lydia Tiller³, Duncan Kimuyu² and George Gatere Ndiritu ¹Karatina University ²Save the Elephants MSc Scholar, P.O Box 1957-10101 Karatina. ³Amboseli Trust for Elephants Corresponding author email address: <u>muteti.mutinda21@s.karu.ac.ke</u>

Abstract

This study aimed to investigate seasonal patterns of resource use by African Savanna elephants in Lake Jipe and the adjacent matrix. Jipe ecosystem is an important dry season refuge for elephants and other wildlife; however, it has undergone severe ecological degradation. The objectives of the study were to: examine relative abundance of elephants, their seasonal movement patterns in protected and unprotected area, compare ground vegetation cover and composition between protected area and unprotected, examine seasonal variation in forage availability and quality in Jipe ecosystem. Adaptive stratified sampling method based on dung pile count density was used to establish sampling units (5*100m transects) inside and outside protected area. Replicate transects (15*1000m) and 2km long transects were used to compliment data from sample units and account for consistency in relative abundance estimation through dung counts and visual encounter using distance transect sampling technique. Generalised Linear mixed Models and Shannon-Weiner diversity index used to

analyse the data. Results from this study show that elephants spent more time in the protected area of the Jipe ecosystem with elephant numbers increasing during the wet season. The unprotected area did not show a significant increase in the number of elephants over the seasons. Forage material quality and availability increases during the wet season with increasing concentration of nutrient elements in herbaceous vegetation growing in the lake and shrubs in the ecosystem. Conclusion from this study is that unprotected area of Jipe ecosystem is home to a resident elephant population whose movement is independent of forage quality, availability, and seasons. The resident population capitalises on aquatic vegetation particularly Typha domingensis and the higher diversity of woody vegetation outside the park. There is need for implementation of adaptive human elephant coexistence strategies in Lake Jipe to promote positive human elephant interactions.

Keywords: Coexistence, Distribution, Elephants, Forage, Nutrients

How Anthropogenic Features and Threats Contribute to Shape Cheetah (*Acinonyx jubatus*) Activities and Connectivity

Cherie Schroff Felidae Conservation Fund - *Tsavo Cheetah Project* Corresponding authors email address: <u>TsavoCheetahProject@live.com</u>

Abstract

The Tsavo ecosystem, supported by its two national parks, s considered one of East Africa's last remaining strongholds for the cheetah (*Acinonyx jubatus*). However, the ecosystem is subject to increasing anthropogenic pressures that escalate cheetah mortality risk associated to infrastructure development. We are studying cheetah movements via camera traps, to understand how and why cheetahs are moving across adjacent ranches ad conservancies, including the obstacles and the characteristics that may facilitate their movements. This study incorporates local collaborators and is critical to securing the cheetah population residing in or using this corridor as a dispersal area. These ranches and conservancies join along a 1-million-acre corridor in-between the Tsavo National Parks, so are essential for the connectivity of Tsavo's cheetah population. Evidence - based data from infrared camera captures are showing us where individually identified cheetahs are moving, and what their obstacles are in a human - dominated environment. These data will provide the science necessary to facilitate interventions at a government level, as well as support sustaining programs that will ensure the reasonable safety and connectivity of Tsavo's cheetah population. Present and forthcoming data will further complement the Tsavo Cheetah Project's ongoing cheetah monitoring and established education and community conservation programs and partnerships.

Keywords: Cheetah, Coexistence, Connectivity, Movements, Threats

Implementing community-based corridors to enhance wildlife connectivity

Benjamin Loloju^{1,} Benson Okita-Ouma², David Daballen^{1,} and George Wittemyer³

¹Save the Elephants, Nairobi, Kenya.

²Wyss Academy for Nature, Nanyuki, Kenya.

³Colorado State University, Fort Collins, Colorado, USA.

Corresponding author email address: G.Wittemyer@coloradostate.edu

Abstract

Infrastructure development, agricultural expansion and human population growth often lead to the decline in wilderness and fragmentation of open rangelands. Given fragmentation can inhibit the movement of people, livestock and wildlife, it is critical to protect corridors between remaining rangeland areas for wildlife and pastoralist people. In northern Kenya, the landscape is being transformed by road development, human expansion and energy infrastructure. Such changes are expected to accelerate with future development and human population growth. To protect the integrity of open rangelands in northern Kenya, we outline the Save the Elephants livestock and wildlife corridor program. First, we identified key corridors in the ecosystem using tracking data from over 100 GPS tracked elephants. Second, we conducted numerous community meetings about the need to maintain connective corridors across the arid landscape of northern Kenya and discussed the location of the key elephant corridors. After numerous sensitization meetings, we facilitated the community demarcation of livestock and wildlife corridors in key areas for the maintenance of open rangelands. Corridors are demarcated as multi-use areas, with prohibitions on the building of permanent structures or fences. This approach ensures community support for the establishment of the corridors, which offer critical, long-term solutions to habitat fragmentation in northern Kenya.

Key Biodiversity Areas: Conserving Critical Species and Restoring Sites for a Sustainable Future

Paul Gacheru, Joshua Sese, and James Mutunga Nature Kenya Corresponding author email address: <u>cpo2@naturekenya.org</u>

Abstract

Key Biodiversity Areas are sites recognized globally that contribute to significantly to the persistence of biodiversity. Identification of these sites follow a scientifically defensible criterion that encompasses all species from all taxonomic groups. Kenya has 68 Key Biodiversity Areas identified on the basis of birds. Annually these sites are assessed using Basic Monitoring protocol which determines the STATE, PRESSURE, and RESPONSES. Since 2004 to date, Basic Monitoring has been carried in Kenya KBAs one of the long-term monitoring schemes providing useful data for policy influence and decision making. Overall results show, PRESSURE on sites have been Mounting, RESPONSES, Reducing and STATE of the sites being relatively Stable. Informed by these results, use of the Key Biodiversity Areas approach serve as valuable tool for setting conservation priorities, establishing protected areas, and guiding land-use planning. Application of the KBAs approach, can contribute to secure a sustainable future for wildlife and ensuring the long-term health and resilience of our ecosystems.

Keywords: Key biodiversity areas, pressure, response, threatened species, threats

Rangeland restoration for a refugee species: re-establishment of grass cover using large scale multi-site experiments in Garissa County

Abdullahi Ali Hirola Conservation Program, Kenya Corresponding author email address: <u>ali@hirolaconservation.org</u>

Abstract

Habitat loss via invasive tree encroachment linked to overgrazing, mega herbivore extirpation, fire suppression and climate change are thought to be key drivers of hirola antelope (*Beatragus hunteri*) decline in eastern Kenya. Today, as few as 500 hirola remain – less than 3% of the population estimated from the 1960s. Rangeland restoration can improve habitat for the grass dependent hirola. However, restoration success likely varies across soil types and targeted species, as well as the restoration approach used. Across 3 soil types (black cotton, loam soil and red sandy soil), we experimentally tested the responses of 4 native grass species to 4 different restoration approaches (tilling, seeding + manure, seeding, no treatment). We applied mixed models to understand the response of planted grass species to different restoration treatments and also assessed the influence of temperature and rainfall conditions on grass cover in three soil types. In this poster presentation, we will discuss the role of soil type, grass species, rainfall and temperature in driving the seasonal fluctuations in grass cover as well as our indigenous led conservation efforts to boost population growth through landscape level range restoration.

Keywords: Refugee species, habitat loss, hirola, rangeland restoration, tree encroachment, and grass cover

Socio-Economic and Environment Sustainability Outcomes of The Competing Land Use Systems in Northern Tanzania.

Lucas Elius Yamat¹, Pablo Manzano^{1,2,3,4}, Agustin del Prado^{1,2} and Noelia Zafra-Calvo^{1,2}

¹ Basque Centre For Climate Change (BC3), Leioa, Spain

² Ikerbasque — Basque Foundation of Science, Bilbao, Spain

³ Global Change and Conservation Lab, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland

⁴ Helsinki Institute of Sustainability Science (HELSUS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.

Corresponding author email address: lucas.yamat@bc3research.org

Abstract

Community-based conservation provides combined social, economic, and environmental outcomes by integrating income from wildlife tourism, and those from crop and pastoral production systems. Such combined land use can significantly host high wildlife populations while also supporting high livestock densities through a coexistence model. However, the community conservation model in East Africa faces a series of challenges that hamper its further development, particularly from the social side. We used a multidisciplinary approach to characterize the economic, environmental and social outcomes resulting from the interaction between wildlife conservation, pastoralism and crop production in Northern Tanzania. The Economics perspective was imperative in understanding the amount of income each of the land uses is yielding, and at which price to pay in terms of ecosystem services that are gained or lost. But the outcomes can also be explained through ecological and sociological viewpoints. We ultimately placed these outcomes along a centre-periphery gradient - an important factor in disentangling elements

that determine inequalities and opportunities for livelihood diversification and understanding the impact of such gradients on multidimensional sustainability. Our results suggest that policy unpredictability, human-wildlife conflicts, and invasive or unpalatable plant species, are affecting the sustainability outcomes from each land use type we studied. In particular, the centralized policies that take rights from the communities and deny access to important livestock resources prompt grievances which ultimately trigger conflicts. For communitybased conservation to be sustainable, justice and social values including coexistence with wildlife should be promoted, while containing the human population and controlling unstainable crop expansion. Social services should be improved, including access to livestock markets, and provision of education and healthcare. These are determinant in improving human wellbeing and are the tools to empower local communities living with wildlife for achieving the long-term sustainability.

Keywords: Competition, land use systems, northern Tanzania, sustainability, wildlife management areas.

Sub-theme: Approaches to Enhance Human-Wildlife Coexistence in Human-dominated Landscapes

Building a landscape of resilience: large carnivore governance and management implications of farmers' attitudes and livestock husbandry practices in a multicultural setting within Meru National Park, Kenya.

K. Kariuki^{1,3}, L. Narisha^{1,2}, G.R. de Snoo^{1,4}, L.D. Bertola^{5,6}, F. Lesilau², C. Ngweno⁷ and H.H. de Iongh^{1,3,6}

¹ Institute of Environmental Sciences (CML), Leiden, Netherlands, ² Kenya Wildlife Service, Nairobi, Kenya, ³ Evolutionary Ecology Research Group, Department of Biology, University of Antwerp, Belgium, ⁴ Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands, ⁵ Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark ⁶ Leo Foundation, ⁷ Born Free Foundation, Kenya.

Corresponding author email address: kennedyolekariuki@gmail.com

Abstract

We conducted 120 semi-structured interviews with members of five ethnic groups living across nine different villages around the semi-fenced Meru National Park, Kenya. We assessed the respondents' socio-economic characteristics, their knowledge of carnivores, their attitude towards carnivores, the perceived value of carnivores in their landscapes, and their livestock husbandry practices. We found that 95% of the respondents perceived a problem with wildlife, and respondents viewed lions (Panthera leo), spotted hyenas (Crocuta crocuta) and leopards (Panthera pardus) as significantly more problematic than other species due to the threats they posed to livestock and humans. Despite this, only 15% of people admitted to having killed any large carnivores. Livestock depredation was widespread, has affected 95% of households, and was also the most abundant form of livestock loss - survey data revealed that 61.4% of the lost stock was predated, compared to 20.2% lost to disease and 18.2% to theft. An increase in livestock depredation predicted the highest variation in farmers' attitudes

towards carnivores. Moreover, other socio-economic factors such as the respondent's ethnic group, age, education level, knowledge of carnivores, wealth status, the height of the boma fence, and distance from the park boundary also had some influence on the local farmers' attitude towards large carnivores. The study demonstrates the complexity of human-carnivore interactions in a multicultural context, whereby perceived problems could vary or potentially be exacerbated in relation to cultural differences. Effective livestock husbandry practices have also been recorded to be useful in mitigating humancarnivore conflict in the area. This study recommends involving measures to improve positive attitudes of local farmers, their livestock husbandry practices, predator-related benefits to local farmers, effective early warning systems; and highlights the importance of taking action to also address the socio-cultural drivers of conflict, rather than merely focusing upon reducing damage to livestock by large carnivores.

Keywords: Attitudes, boma, carnivore, compensation, human-lion conflict.

Amboseli Trust for Elephants HECx Program - Learning how to coexist by understanding elephant behaviour in Kenya

Lydia Tiller, Keith Lindsay, Norah Njiriani, Catherine Sayialel and Cynthia Moss. Amboseli Trust for Elephants Corresponding author email address: <u>Itiller@elephanttrust.org</u>

Abstract

Knowledge of animal behaviour is essential for improving Human Elephant Coexistence (HWCx) in designing deterrence mechanisms or promoting compatible land use. However, integration of research into human contexts is still not wellestablished as standard practice. Understanding which individuals, how many and with which characteristics, are driving conflict scenarios is key to developing effective responses, for humans and elephants. ATE's experience shows that coexistence between people and African elephants (Loxodonta africana) can be improved by targeted interventions. An example is ATE's Consolation Program. Spearing of elephants in retaliation to livestock killed by elephants suggested that spearing incidents could lead to a deterioration in both elephant and human tolerance. With the Consolation Program, elephanthuman relations improved and spearing incidents decreased. Another example is the outreach work in relation to the iconic bull elephant, Tim. Sharing with rangers ATE's knowledge of Tim's personality and strategy led to greater awareness. This appreciation, together with the stories they then recounted to community members, improved tolerance and understanding. ATE's HECx programme initiation this year, built on using partner perspectives - including trends from Big Life Foundation's HEC data from across Amboseli, will focus in part on using elephant behaviour to understand HEC scenarios. The programme will seek to de-escalate conflict by recognising individual elephants involved in interactions with people, and to facilitate engagement of communities with their issues and solutions. The research team will record specific conflict behaviours, identify tactics being developed and used by the elephants involved and determine how this behaviour is being transferred to other individual elephants. This knowledge will be used to adapt and tailor the approaches being taken to prevent and mitigate conflict, and to promote coexistence. Underpinning and complementing this observational work is ATE's 50-year database of individual life histories and behavioural records.

Keywords: Behaviour, human-wildlife conflict, coexistence, mitigation, Loxodonta africana,

Appraisal of the Government and Private Compensation Schemes for Human Wildlife Conflict in Kenya

Sarah M. Omusula Yale University Corresponding author email address: <u>somusula@gmail.com</u>

Abstract

Human-wildlife conflict (HWC) is a global concern threatening wildlife conservation, human security, and livelihoods. This has led to severe socio-cultural and economic effects especially in countries where people depend on crop and livestock farming for a livelihood. Adaptive strategies such as financial compensation, insurance and performance payment have been enforced to ensure wildlife survival, increased wildlife tolerance and improved livelihoods. However, studies criticize financial compensation policies as it does not address root causes of HWCs, an expensive and unsustainable source of funds, weak policies, poor governance, lack of transparency and does not enhance tolerance for wildlife therefore undermining its objectives. This study, therefore, appraised the effectiveness of the Kenyan Government compensation scheme around Tsavo West National Park versus a Private compensation schemes in Mbirikani Group Ranch, in Makueni and Kajiado County. This study identified strengths, weaknesses, opportunities, and threats associated with the two compensation schemes to potentially minimize HWCs in Kenya. This study investigated people's views on the financial reimbursement and alternatives to compensation. The Kenyan Government compensation scheme was considered ineffective in reimbursing for losses. On the contrary, the Private Compensation scheme i.e., Predator Compensation Fund (PCF) in collaboration with Mbirikani Group Ranch has been effective in recompensing for predator attacks on timely basis, although it does not totally enhance tolerance to wildlife such as reducing retaliatory killings especially carnivores. Therefore, there is need to integrate compensation with awareness on preventative measures to protect livelihoods and wildlife.

Assessing the drivers of attitude, tolerance and perception of local communities on elephants (*Loxodonta africana*) and human wildlife conflicts: a case study of Meru Conservation Area, Kenya

Newton Simiyu¹, Penny Banham², Francis Kago¹, Alois Mweu¹, Irene Kanga¹, Linda Kimotho¹, Joseph Hedges², Tim Oloo¹ and Nikki Tagg²

¹Born Free Kenya, Karen, Nairobi, Kenya.

²The Born Free Foundation, 2nd Floor Frazer House, 14 Carfax, Horsham RH12 1ER, UK.

Corresponding author email address: simiyu@bornfree.or.ke

Abstract

Human-elephant conflict (HEC) is a major conservation challenge in Kenya, as a result of habitat loss due to land use change. Negative interactions sit along a spectrum of HEC, from crop foraging to human and elephant (Loxodonta Africana) injury and death. HEC is multi-dimensional and manifests itself in different escalating 'levels' of conflict from the actual dispute, and underlying conflict, to deep-rooted conflict which may involves threats to social identity of values and is more difficult to address than the initial dispute. Additional factors such as age, gender, education level, occupation and or socioeconomic status, can also influence what level of conflict people experience. The Meru Conservation Area, where Born Free has operated since 2014, is a hotspot for HEC, with communities surrounding Meru National Park experiencing over 200 HEC events every year. In order determine the drivers and levels of conflict experienced in the Meru Conservation Area, we

conducted a social survey of 832 people, in July-August 2022, from households in 37 sublocations in Isiolo South, Isiolo North, Igembe North, Igembe Central Igembe South, Tharaka North, Tharaka South and Mwingi North sub counties. 78% (n=832) of participants self-reported as agriculturalists or agropastoralists, and 45% of these reported experiencing conflict with elephants (*Loxodonta africana*) in the last year. Using Likert scale questions, we calculated an overall percentage of 49% 'positivity towards elephants'. Overall, the implications of this study suggest that effective conservation efforts must take into account the attitudes and perceptions of local communities towards wildlife. By understanding the drivers of these attitudes and perceptions, conservation organizations can develop more targeted and effective strategies for mitigating human-wildlife conflicts and promoting coexistence between humans and animals.

Keywords: Attitude, Coexistence, Human-elephant conflict, Meru Conservation Area, Perception.

Behavior of rescued and rehabilitated elephant calves with an eye toward release success

Colman Lesowapi¹, Lekilia P. Lokooria¹, Jenna M. Parker² and Shifra Z. Goldenberg²

¹ Reteti Elephant Sanctuary, Namunyak Conservancy, Kenya

² San Diego Zoo Wildlife Alliance, Escondido, CA92027

Corresponding author email address: lesswalaicoleman@gmail.com

Abstract

Rescue, rehabilitation, and release of wildlife, which may become more common as human and wildlife populations increasingly intersect, necessitates periods during which wildlife are under human care before they can be released. Once released, wildlife face a number of challenges as they learn about their new environment. Behavior of wildlife while in captivity may provide insights that can be leveraged to facilitate their transition to the wild. This may be particularly important for socially complex and cognitively advanced species like elephants. The Reteti Elephant Sanctuary rescues and rehabilitates calves found in distress across northern Kenya, with the aim to release them back to the wild when they are old enough. In the wild, released calves will face numerous challenges in order to survive, including social integration into wild herds and avoidance of humans in dangerous contexts. The behavior of calves pre-release may be predictive of their behavior post-release, and thus may be an important source of information to guide release decisions. We describe a monitoring program to characterize calf behavior prior to release at the Reteti Elephant Sanctuary, including social behavior and behavior toward humans. We present results describing trends in the behavior of the herd as well as individual variation among calves, and discuss the implications of this type of monitoring in guiding release decisions to maximize the success of calves following release to the wild.

Capabilities, opportunities and motivations for poaching reticulated Giraffe in Central-Northern Kenya

Symon Masiaine¹, Natalie Rose Asai¹, Jonathan Lenyakopiro¹, Antony Liosoi¹, Emmanuel Emilio¹, Paul Wachira², Jenna Stacy-Dawes³, Kirstie Ruppert³, and Tomas Pickering³

¹Twiga Walinzi at Loisaba Conservancy, Laikipia County, Kenya

²Loisaba Conservancy, Laikipia County, Kenya

³Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, USA

Corresponding author email address: giraffes@loisaba.com

Abstract

In central-northern Kenya, pastoralists hunt giraffe. Over recent decades, this illegal behavior has contributed to a decline in the reticulated giraffe population and continues to inhibit their population recovery. Enforcement interventions to reduce giraffe poaching exist; however, complimentary approaches that engage pastoralist communities could further reduce poaching. To assist conservation practitioners, our research objective was to understand pastoralists' capabilities, opportunities, and motivations of the poaching giraffe behavior from their perspective. As part of the Twiga Walinzi program, we conducted 18 focus group discussions across six community conservancies with mostly Samburu and Laikipiak Maasai participants. With each group of elders, women, or moran, we discussed who, how, and why giraffe are hunted and what interventions might reduce poaching. We thematically analyzed our written notes of responses to summarize findings. We then administered a structured questionnaire with over 600 moran,

junior elders, elders, and women from three of the community conservancies to quantifiably investigate the current and specific factors that contribute to people's motivations to hunt giraffe or consume giraffe meat. Our findings show that moran and junior elders are largely responsible for hunting giraffe and are primarily motivated out of hunger, especially when herding during droughts. However, we found that there are additional nuanced reasons for targeting giraffe over other wildlife species. Furthermore, hunting giraffe is typically group activity and is now more easily facilitated by the proliferation of guns. The opportunity and motivation to hunt giraffes is perceived to have decreased because of the greater law enforcement, greater wildlife benefits from the conservancies and increased education outreach from conservation programs like Twiga Walinzi. Participants recommended ways to increase community engagement and benefits from wildlife conservation which they thought would further reduce giraffe poaching.

Keywords: Community conservancy, Reticulated giraffe (*Giraffa camelopardalis reticulata*) Human-wildlife coexistence, Poaching, Wild meat

Community engagement in vulture conservation in the Southern Rangelands of Kenya

Paul Gacheru, Brian Otiego, Ednah Nyamb, Evance Otieno, Fridah Kalekye, Fridah Wambui, Rebecca Ikachoi and Simon Shati

Nature Kenya,

Corresponding author email address: vulturesconservation@naturekenya.org

Abstract

Wildlife poisoning poses a great threat to the survival of African vultures species in Kenya. A key driver of wildlife poisoning is human-wildlife conflict as a result of livestock depredation. To mitigate wildlife poisoning, we rolled out community outreach programs aimed at changing attitudes and perceptions of local communities. A low-cost approach of working with community volunteers was rolled out in 5 poisoning hotspots in the southern rangelands of Kenya. Volunteers created awareness, collected data on HWC, and supported in response to wildlife poisoning incidents. Between August 2019 and December 2021, results indicate there was an increase of 47% in reporting HWC incidents to relevant authorities and an increase of 51% in non-poisoning or wildlife killing as HWC deterrent techniques approach applied by local communities. Our work shows that community awareness campaigns with other interventions coupled i.e., boma reinforcement; can contribute to the reduction of wildlife poisoning incidents

Keywords: Awareness, community volunteers, human wildlife conflict, vulture conservation, and wildlife poisoning

Ewaso Lions - a story of community-led conservation

Lekilelei, J., Lalparasaroi, M., Kariuki, E., Kurere, J., Otieno, T and Bhalla, S Ewaso Lions

Corresponding author email address: shivani@ewasolions.org

Abstract

Lion, *Panthera leo*, numbers have declined by approximately 43% over the past 20 years across Africa. In Kenya, there are ~2,489 lions found in both protected and unprotected areas. Habitat loss and conflict with humans has largely contributed to their decline.

Ewaso Lions, a Kenyan non-profit organisation, is dedicated to conserving lions and other large carnivores by promoting continued co-existence between people and wildlife in the Samburu-Isiolo landscape. We engage and build the capacity of key demographic groups (warriors, women, elders and children) by developing approaches to reduce human-carnivore conflict. The Warrior Watch programme, initiated by a Samburu warrior, makes warriors ambassadors for lions within their communities, while raising awareness about conservation and advocating for peaceful coexistence with lions. Through self-initiated initiatives, Mama Simba empowers Samburu women to be the voice for lions with the firm cultural belief that wildlife belongs to women. The women work on recovering lion habitat, lead discussions on culture and conservation and work on drought related activities. Kura's Pride improves domestic animal welfare through an innovative domestic animal veterinary unit. Lion Kids Camps inspire a new generation of wildlife conservationists and give school-going and herding children the chance to experience wildlife in a positive way. Eleven lions were known when Ewaso Lions started, and currently, they are almost 50 lions. This increase has largely been as a result of our community-led programmes. We are securing a future for lions in a dynamic, cultural landscape, achieved through community-led conservation. Although we began our work with a quest to understand conflict, the journey became a mission to promote coexistence. With a focus on lions, local leadership, and embracing the pastoral way of life, a thriving lion population is now safe on community lands, and we have seen true ownership of lions grow across the landscape.

Human-lion Coexistence: Lessons learned from Predator-proof bomas project in Amboseli-West Kilimanjaro Ecosystem, Kenya and Tanzania

David Manoa¹; Stephen Melubo¹., Linda Kimotho¹., Penny Banham²; Tim Oloo¹ & Nikki Tagg²

¹Born Free Kenya, Nairobi, Kenya;

²Born Free Foundation, Horsham, UK

Corresponding author e-mail address: manoa@bornfree.or.ke

Abstract

Livestock depredation by lion (Panthera leo) deprives pastoralists their livelihoods, and it can lead to revengeful killing of lions. Yet, the lion populations have been eradicated from at least 30% of their historical range in Eastern and Southern Africa. Despite the well-known threats facing the lion population, few solutions have been implemented on a long-term basis to protect both the community's livelihoods and lion population. The Born Free Foundation initiated the Pride of Amboseli project in March 2010 to promote coexistence between people and lions by upgrading traditional Maasai boma-TBs (kraals) to Predator-proof bomas (PPBs) in Amboseli-West Kilimanjaro Ecosystem. Unlike the TBs, the PPBs have 1.8m high rolls of chain-links attached to strong posts (3m apart) and strong doors. Between March 2010 and March 2023, 383 PPBs were constructed, averaging to 30 annually. Our analysis indicates that most PPBs (74%) were constructed on cost share, beneficiaries contributing 15% (n=44), 25% (n=214) and 50% (n=25) of total

cost. The PPB's average circumference was 205.97m (n=316), had 18.23 people (n=271) and protected an average of 317.65 livestock (n=276). A total of 87,646 livestock (64.24% shoats, 35.90% cattle & 0.86% donkeys) were protected from predation at night. Before the PPBs construction, 83.18% (n=214) of the beneficiaries lost their livestock to predators at night. Since the project inception, only 2.09% (n=8) of PPBs had predator incursion due to low maintenance (7 incidents) and leaving the door open (1 incident). A large proportion, 85% (n=227) of the beneficiaries guarded their stock every night before the PPBs. However, 12 months later, guarding time reduced to 'normal checks' of 5.2 days (n=74) per week. PPBs can contribute to conflict mitigation and coexistence of people and carnivores. Maintenance is key to PPBs effectiveness, and cost-sharing promotes the sustainability and community ownership of the project.

Keywords: Coexistence, Cost sharing, lion, livestock predation, Predator-proof boma.

DAY **02**

<u>Abstracts</u>

Wednesday 27th September 2023

Sub-theme: Changes in Wildlife Population Trends and Dynamics

Modelling Distribution of Kirk's Dik-Dik (*Madoqua kirkii*) in the Greater Tsavo Ecosystem

Themes: Wildlife habitat restoration and connectivity; Wildlife population dynamics

Fredrick Lala Wildlife Research and Training Institute Corresponding author email address: <u>flala@wrti.go.ke</u>

Abstract

Kirk's Dik-diks are habitat-restricted small antelopes ranging in Eastern and South Western Africa arid savanna shrub and woodlands. They are monogamous; pair-bonding for life and male maintain the territory. They are the main prey of Leopards, raptors in Tsavo National Parks and hosts for various ectoparasites (Kinswood et al, 1997). Recent bush meat poaching statistics of several fauna species in Tsavo Conservation Area indicate modes in Kirk's Dik-dik incidences. Bush meat poaching often occurs in wildlife protected and dispersal areas. The foregoing facts prompted us to estimate the population size and model the spatial distribution of Kirk's Dik-diks in the Greater Tsavo Ecosystem to inform protection and rehabilitation. Dik-dik and habitat data was collected from Tsavo National Parks and Ranches in year 2022 using Line-transect method. Data sets of temperature, precipitation, slope, land cover, distances of sighting points from predators, zebras, road network, KWS management points, shoats, settlements, river;s and water points were acquired from secondary sources. Rdistance and Maximum Entropy modeling for environmental explainers were applied to estimate Dik-dik densities and predict Dik-dik spatial distribution respectively. Dik-dik density was estimated at 3-5 animals/km2 lower than in 1970s and 1990s (Hofmann, 1973 and Kingswood et al, 1996). Taita Taveta Ranches had the highest Dik-dik encounter rate and suitable area, followed by Tsavo West NP and Tsavo East NP. Land cover had the highest (43.2%) contribution to the model prediction; water points was the second highest; precipitation; carnivores and KWS

management points. Response figures indicate the species prefers savannah shrub lands and woodlands to grassland and forest; <10km radius from water points, annual precipitation and <20km from KWS management points. Taita Taveta Ranches, Tsavo West NP Mzima-Murka sectors, Tsavo East National Park Ithumba-Athi sectors and Northern Chyulu Hills NP had high to medium suitability conditions. Very low to low suitability was predicted in South Kitui NR, Galana- Kulalu Ranch, South-Eastern Tsavo East, Chyulu Hills forest and Rombo-Mbirikani-Kuku ranches.

Low encounter rates in Chyulu Hills and Southern Tsavo East attributable to forest and grassland cover which are unfavourable to Kirk's Dik-dik. Low encounter rate in Kulalu is result of low habitat suitability due to human settlements, mass tree cutting, agriculture, livestock incursions and bush meat poaching. The vice versa prevails in Taita Taveta Ranches, Tsavo West NP and Tsavo East NP.

Enrichment planting of savannah open grassland in Tsavo East NP and degraded forest lands in Cyulu Hills be informed by best practices. Strategic ranger bases be developed in South Kitui NR and wildlife security patrols intensified in North Eastern Tsavo East NP Ecosystem. Evacuate remnant Dik-diks from Kulalu ranch section to the protected areas and stop illegal land acquisition.

Leopard (*Panthera pardus pardus*) density and putative co-occurrence with Spotted Hyaena (*Crocuta crocuta*) in the Maasai Mara Ecosystem, Kenya

Eve Hills¹, Samuel Penny², Elena Chelysheva^{3*}, Patrick Omondi⁴, Shadrack Ngene⁴, Bryony Tolhurst¹ ¹School of Applied Sciences, University of Brighton ²Bristol Zoological Society, Bristol, ³Mara-Meru Cheetah Project Nairobi, Kenya; Email: <u>cheetah9@mail.ru</u> ⁴Wildlife Research and Training Institute, Corresponding author email address: <u>cheetah9@mail.ru</u>

Abstract

The African large predator guild (ALPG) is the last intact large predator guild, and interactions between its members influence ecosystem function. It contains leopard (Panthera pardus pardus), lion (Panthera leo), cheetah (Acinonyx jubatus) and spotted hyaena (Crocuta crocuta). Of these, the leopard is the least studied in the Maasai Mara Ecosystem (MME), and one of the least dominant members. We used camera trapping to estimate leopard density and investigate the presence of lion and hyaena as potential predictors of leopard occurrence, controlling for preferred prey relative abundance/richness, and habitat. We deployed 68 camera traps at 34 stations (mean spacing 2.5km) for 63 consecutive days during the wet season in the Mara Triangle area of the MME in 2019. We recorded habitat as open or closed within 25m of stations, and quantified competitor and preferred prey presence from camera images. We estimated leopard density using closed population spatially explicit capture recapture (SECR) analysis,

and predictors of leopard occurrence using generalized linear mixed modelling (GLMM). We recorded 725 leopard images and estimated density at 1.90±0.56 individuals 100 km² ¹, which is relatively low compared to other areas and only slightly higher than estimates of cheetah (an inferior competitor) in the MME from a previous study. The best model predicting leopard occurrence contained hyaena presence, and showed a positive association, indicating co-occurrence. Hyaenas are numerous in the MME, and commonly klepto-parasitize leopard kills, i.e., hyaenas likely follow leopards. Our preliminary results indicate that hyaena populations may limit leopard populations in the MME. However, low variance prevented modelling of detection when considering covariates of leopard occurrence, therefore occupancy analysis of a larger dataset is required to confirm findings. Further work should also explicitly test hypotheses relating to mechanism of hyena-leopard co-occurrence and replicate the study across the MME, seasonally and annually.

Keywords: camera-trapping; co-occurrence; density; leopard; spotted hyena

Ecological factors influencing large herbivore distribution (LHD) in Ruma National Park of Homa Bay County, Kenya

Lukaria Kanyi Luke¹, Paul O. Abuom² and Boniface O. Oindo² ¹Wildlife Research and Training Institute ²Maseno University School of Environmental and Earth Sciences Corresponding author email address: <u>lkanyi@wrti.go.ke</u>

Abstract

Understanding ecological factors influencing large grazing herbivores distribution (LHD) in terrestrial ecosystems is a fundamental goal of ecology. Studies have shown that ecological factors variably influence LHD in savannah ecosystems. A study on ecological factors influencing large herbivore distribution (LHD) in Ruma National Park was carried out to reveal distribution patterns to enhance resource planning. It was found out that the mean grass biomass in Ruma National Park varied between 163g/m² and 1940g/m² where the relationship (R²=0.83, P=0.0001), indicated that 83% of the variation on LHD was accounted for by grass biomass. Positive association (R²=0.66, P=0.0001), strongly demonstrated that 66% of the variation

on LHD was explained by Grass Species Richness (GSR) with *Themeda triandra* being the most abundant grass species. Mean monthly rainfall (R²=0.51, P=0.001) explained 51% of the variation on LHD. Multiple regression (R²=0.33, P=0.001) show that water sources and altitude explained 33% of the variation on the LHD with water sources (t=3.02) variation being higher than altitude (t=1.4). High rainfall had low LHD in the Park plains due to flooding. In conclusion the main ecological factors that best predict LHD are grass biomass and GSR. Therefore, there is need to conserve ecological factors such as grass biomass and GSR in Ruma National Park to safeguard the ecological diversity.

Keywords: Biomass, GSR, Altitude, Water sources and Rainfall

Interaction of the African leopards (*Panthera pardus pardus*) and olive baboons (*Papio anubis*) In Laikipia, Kenya.

Laiyon Lenguya^{1,2}, Nicholas Pilfold³, Kirstie Ruppert³ and Tomas Pickering³ ¹School of Biological Sciences, University of Nairobi ²Loisaba Conservancy, Department of Research ³San Diego Zoo Institute for Conservation Research Corresponding author email address: <u>leopards@loisaba.com</u>

Abstract

Studying interactions between leopard (*Panthera pardus pardus*) and baboon (*Papio anubis*) presents challenges due to the elusive nature of leopards and the rarity of primate predation events, often occurring at night. To investigate leopard-baboon dynamics, we utilized camera traps, distance sampling, and baboon sleeping site surveys. The study estimated a leopard population density of 11.4 (95% CI 8 – 17) leopards per 100 km², with a total population size of 25 (95% CI 17 – 37) leopards. Baboon density was estimated at 3 (95% CI 1.8 – 4.6) individuals per km², with a population size of 655 (95% CI 409 – 1049) at Loisaba. Baboons preferred sleeping sites in trees with a mean height of 16.8 \pm 3.2m and 87% overlapping canopy, as well as cliffs with a height of 19.7 \pm 4.9m and 96% ledges. Monitoring baboon sleeping sites using camera traps for 1053 days

revealed a relatively low detection probability for leopards (0.04) compared to baboons (0.46). Although leopards posed a predation risk at night, they did not significantly deter baboons from using sleeping sites. However, predation events were localized across different baboon sleeping sites. Regarding spatiotemporal partitioning, leopards were primarily nocturnal (49%), crepuscular (28%), and diurnal (23%), while baboons were mainly diurnal (84%) and crepuscular (16%). Leopards showed low temporal overlap (=0.32 (0.26-0.37)) with baboons but had a 55% spatial overlap. The research provides insights into the elusive activity patterns of leopards, particularly their peak hours, aiding future studies in the greater Laikipia conservation area. Additionally, estimating leopard population density contributes to Kenya's national goal of understanding

leopard populations better. In conclusion, despite challenges posed by the secretive nature of leopards and infrequent primate predation events, our study enhances understanding of predator-prey dynamics, offering valuable contributions to wildlife conservation efforts in the region.

Keywords: Leopards; Baboons; Camera traps; Predation; Conservation

Dynamics of herbivore distribution and habitat selection in the greater Serengeti Ecosystem, Tanzania

Hamza K Kija1, Lazaro J Mangewa2, John B Kija1, Joseph O Ogutu3, Jafari R Kideghesho4, Mohammed Y Said56, and Emmanuel F Nzunda7

1 Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania

²Department of Wildlife Management, College of Forestry, Wildlife and Tourism, Sokoine University of Agriculture (SUA), Morogoro, Tanzania;

³Institute of Crop Science, University of Hohenheim, Biostatistics Unit, Fruwirthstr. 23, 70599, Germany

⁴College of African Wildlife Management (CAWM), Moshi, Tanzania;

⁵Department of Biology, Norwegian University of Science and Technology, N7491, Trondheim, Norway

⁶Institute for Climate Change and Adaptation, University of Nairobi, 00100, Nairobi, Kenya;

⁷Department of Forest Resources Assessment and Management, College of Forestry, Wildlife and Tourism, Sokoine University of Agriculture (SUA), Morogoro, Tanzania

Corresponding author email address: <u>hamza.kija@tawiri.or.tz</u>

Abstract

Understanding herbivore's spatio-temporal distribution and habitat selection are important aspects in the ecology and management of species in protected landscapes. This study was conducted in the Great Serengeti Ecosystem, in Northern Tanzania. The objective of this study was to determine the dynamics of herbivore's distribution and habitat selection of seven medium to large sized herbivores (Impala, Grant's gazelles, Wildebeest, Zebra, Buffalo, Giraffe, and Elephant). Herbivores aerial survey data and remote-sensing-based habitat quality maps covering two study periods (1995 and 2015) were used to assess habitat selection and use. Herbivores were aggregated according to their feeding guilds: browsers (Grant's gazelles and Giraffe), grazers (Wildebeest, Zebra and Buffalo), and mixed feeder (Impala and Elephant), and habitats characterized into low, medium, and high qualities, derived from quality habitat maps generated from Integrated Valuation of Environmental Services and Tradeoffs (InVEST) model. We utilized the kernel density to map species distribution range. Bonferroni confidence interval and Chi-square goodness-of-fit test were used to assess habitat selection and use. We observed a significant clustered distribution pattern for all herbivores at the ecosystem level across space and time. We recorded high mean species observations in Serengeti National Park (NP), followed by Game Reserves (GRs) and least in Wildlife Management Areas (WMAs). The herbivores mean sightings were higher for 2015 than for 1995. Herbivores distribution ranges contracted for browsers and expanded for grazers and mixed feeders for 2015 in comparison to 1995. Our data suggest that, herbivores showed a significant avoidance of low-quality habitats and favored high-quality habitats across space and time. Information on specie's distribution, habitat selection and use are useful in determining high priority areas for effective conservation practices. Our study recommends a continued protection efforts and haltering habitats degradations in the ecosystem.

Keywords: Protected area categories, ecosystem, habitat quality, InVEST model, Census data

A general age- and sex-structured model of wildlife population dynamics illustrated by the Mara-Serengeti topi population

Sabyasachi Mukhopadhyay, Hans-Peter Piepho, Sourabh Bhattacharya, Holly T. Dublin, Joseph O. Ogutu University of Hohenheim, Institute of Crop Science, Biostatistics Unit (340C), Fruwirthstrasse 23, 70599 Stuttgart Germany Corresponding author email address: <u>jogutu2007@gmail.com</u>

Abstract

Biodiversity of large wild mammals is declining at alarming rates worldwide. It is therefore imperative to develop effective population conservation and recovery strategies. Population dynamics models can provide insights into processes driving declines of particular populations of a species and their relative importance. But there are insufficient tools, namely population dynamics models for these herbivores, for characterizing their decline and for guiding conservation and management actions. Therefore, we have developed a model which can serve as a tool to fill that void. Specifically, we develop an integrated Bayesian state-space population dynamics model for wildlife populations and illustrate it using a topi population inhabiting the Masai Mara Ecosystem in Kenya. The model integrates ground demographic survey with aerial survey monitoring data. It incorporates population age- and sex-structure and life-history traits and strategies and relates birth rates, age-specific survival rates

and sex ratios with meteorological covariates, prior population density, environmental seasonality and predation risk. It runs on a monthly time step, enabling accurate characterization of reproductive seasonality, phenology, synchrony and prolificacy of births, juvenile and adult recruitments. Model performance is evaluated using balanced bootstrap sampling and by comparing model predictions with empirical aerial population size estimates. The hierarchical Bayesian model is implemented using MCMC methods for parameter estimation, prediction and inference and reproduces several well-known features of the Mara topi population, including striking and persistent population decline, seasonality of births, juvenile and adult recruitments. It is general and can be readily adapted for other wildlife species and extended to incorporate several additional useful features.

Distribution and abundance of migrant birds and endangered mammals within Naivasha Wildlife Sanctuary, Kenya

Maina P¹., Ngoru B¹., Mwenda R¹., Mungai S²., Kinzi S³., Bett M³. & Nyamasyo S³. ¹Wildlife Research and Training Institute, Wildlife Populations and Habitats Dynamics, Naivasha, Kenya ²Wildlife Research and Training Institute, Scientific Services, Naivasha, Kenya ²Wildlife Research and Training Institute, Training, Naivasha, Kenya Corresponding author email address: <u>pmaina@wrti.go.ke</u>

Abstract

The survey was carried out in Naivasha Wildlife Sanctuary located at S0.7754°, E36.3715° which comprised of the game farm, sanctuary and annex covering a total area of 1,550 Hectares. Survey blocks were delineated based on vegetation types and habitats. Birds were sampled using time-species count method whereas capture mark release method was employed to study small mammals using sherman and tomahawk traps. Large mammals were sampled using direct and indirect sightings along transects. A total of 324 birds of different species were recorded out of which 6 were migrant species thus justifying the area as an Important Bird Area providing roosting grounds for both afro-tropical and Palearctic migrant birds. They include African Paradise Flycatcher (Terpsiphone viridis, AM), Barn Swallow (Hirundo rustica, PM), Black Kite (Milvus migrans, AM, PM), Common Swift (Apus apus), PM, Red-chested Cuckoo (Cuculus solitaries, AM), White Stork (Ciconia ciconia, PM). The study also recorded 3 endemic species and include; Rufousnaped Lark (*Mirafra Africana*), Speckled Mousebird (*Colius striatus*) and Yellow-breasted Apalis (*Apalis flavida*). Two birds of prey, Black Kite and Augur Buzzard, were recorded but with low relative abundance.

Maasai Giraffe (Giraffa tippelskirchi) and spotted hyena (Crocuta crocuta) were recorded as large endangered mammals' species. A total of 7 species of small mammals were sampled that included *Lemniscomys striatus, Thallomys loringi, Graphiurus murinus, Mus rattus, Praomys spp* and *Mastomys spp* and the *Ictonyx striatus* (African pole cat). There were also direct and indirect sightings of Dikdik, Scrub hare, Rock hyrax and mongoose burrows. The study area has a rich diversity of birds and mammals despite being relatively disturbed and is comparable with other ecosystems that are relatively intact. There is therefore need to ensure effective conservation measures within the sanctuary aimed at maintaining natural ecosystems with minimal disturbance.

Keywords: Protected area categories, ecosystem, habitat quality, InVEST model, Census data

Past outcomes and future directions for African elephant translocations

Lydia Tiller¹, Shifra Z. Goldenberg² and Rob Slotow³ ¹Amboseli Trust for Elephants, P.O. Box 15135, Langata 00509, Nairobi, Kenya ²San Diego Zoo Wildlife Alliance,15600 San Pasqual Valley Rd, Escondido, CA 92027, USA ³School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa Corresponding author email address: <u>ltiller@elephanttrust.org</u>

Abstract

Conservation translocations are a common management practice across species, accounting for numerous successes across diverse taxa. For the African savannah elephant (*Loxodonta africana*), translocations are undertaken to repopulate parks, reduce populations, address human-wildlife conflict, and release rehabilitated individuals. Elephant translocations are a costly and risky undertaking, requiring skilled teams, available release sites, and sufficient funding to carry out. Translocations require animals dependent on existing social bonds and landscape knowledge to start afresh, which may compromise their ability to adapt in a new environment. Where animals engaged in conflict are the targets of translocation, there is also risk for involved human communities, and the potential to 'shift' the problem elsewhere. Given the cost of elephant translocations to management agencies, communities, and elephants, it is critical to understand the efficacy of this approach for this endangered and keystone species. Here, we present a review of the peer-reviewed and grey literature to assess the state of knowledge on African elephant translocations. We aimed to determine what is known and what isn't regarding the success of this practice. Our search produced 49 relevant sources, which we scanned for translocation context, location, method and duration of post-release monitoring, type of investigation, and known outcomes. We summarize trends in the literature, distill findings into a set of recommendations for management, and identify research directions that would support translocation decision-making.

Keywords: Human-elephant conflict, reintroduction, population restocking, post-release monitoring, release success

Pathways to human-giraffe conflict and co-existence in Eastern Kenya

Ali Abdullahi¹, Sangale Edwin¹, Adam Ford² and Carly Sponarski³ ¹Hirola Conservation Program, Somali Giraffe Project ²University of British Columbia ³Canadian Forest Service, Natural Resources Canada Corresponding author email address: <u>ali@hirolaconservation.org</u>

Abstract

Giraffe populations are declining significantly across much of Africa due to habitat loss, poaching, civil strife, and human-giraffe conflict. Notwithstanding these factors, while giraffes play an important ecosystem role in the African savanna and the socioeconomic well-being of African communities, less attention has been paid to human dimensions of giraffe conservation. To help fill this gap, we collected information on human-giraffe conflict (HGC) in eastern Kenya. We explored general attitudes, risk perceptions, and the drivers of giraffe sightings. We used a quantitative questionnaire as an interview script to conduct face-to-face interviews with n = 400 respondents in Garissa County, primarily around the Bour Algy Giraffe Sanctuary. On average, respondents generally possessed positive attitudes towards giraffe and, on average, respondents did not see giraffes as a risk: to personal or children's safety, of disease transfer, to cattle productivity, or the integrity of the land. Risk

perception even decreased if a respondent had encountered a giraffe. Interestingly, giraffes were perceived not to cause damage to land or other property by 59% of participants thus highlighting that it may be possible to promote co-existence in the region. Further, competition for water, lack of awareness on the plight of giraffes, habitat encroachment and poverty were raised as the four main conflict drivers. Respondents supported the use of fire, torches, and having dogs as way to deter giraffes. Because of the proximity of giraffes to farms and homesteads, economic activities such as agriculture and cultural tourism, women-led acacia trees nursery enterprises, invasive prosopis control and utilization along with opening up water corridors may motivate communities and minimize HGC. This work provides a basis for action by the community and policy makers to promote giraffe-farmer co-existence in eastern Kenya.

Status, conservation threats and restoration of the Tarangire-Manyara (Kwakuchinja) wildlife corridor in Tanzania

Julius Keyyu¹, Alexander Lobora¹, Bukombe John¹, Baraka Naftali¹, Fortunata Msoffe² and Ally Nkwabi¹ ¹Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania ²Wildlife Division, Ministry of Natural Resources and Tourism, Dododoma, Tanzania Corresponding author email address: julius.keyyu@tawiri.or.tz

Abstract

The Tarangire-Manyara (Kwakuchinja) wildlife corridor is an important habitat for facilitating wildlife movement between Tarangire and Manyara National Parks in Tanzania. However, the corridor is facing a number of socio-economic, ecological and environmental issues. This study was conducted to determine the status and viability of the corridor. A combination of data collection methods namely Focus Group Discussions, participatory mapping, camera traps, elephant collaring and ground transects were used to collect information. Results indicated that a total of 32 wildlife species were recorded in the Kwakuchinja wildlife corridor using both direct and indirect methods. The most frequently recorded wildlife species were elephant (42.9%), giraffe (19%) and zebra (10.2%). Of the species recorded, four are categorized in the IUCN Red List of threatened species, namely the African buffalo (Near

Threatened); Elephant, Giraffe and Lion (Vulnerable). Movement data of 13 collared elephants showed that the corridor is still viable for habitat connectivity. Participatory assessment and boundary verification of the corridor indicated that the area currently being used for wildlife movement has been reduced to 274.45km² (maximum width of 4.2km and a length of 188.14km). Land use-land cover map of the corridor showed that agriculture, bare land, and shrubland are increasing while woodland, grassland and water are decreasing. Ground truthing indicated that the corridor is threatened by increased human activities especially agriculture, human settlement and livestock grazing. It was concluded that Kwakuchinja wildlife corridor is still viable though highly vulnerable; therefore, efforts are required to restore, demarcate and protect the corridor to sustain connectivity of the two National parks.

Keywords: corridor, Kwakuchinja, Tarangire-Manyara, viability assessment

The extent and impacts of invasive species on wildlife habitat productivity: A case of Lake Nakuru National Park, Kenya.

Maina P¹, Ngoru B¹ and Mukeka J².

¹Wildlife Research and Training Institute, Wildlife Populations and Habitats Dynamics, P.O Box 842-20117, Naivasha, Kenya ²Wildlife Research and Training Institute, Wildlife Resource Centre and Information Management, P.O Box 842-20117, Naivasha, Kenya

Corresponding author email address: pmaina@wrti.go.ke

Abstract

Invasive species affect biodiversity uniqueness by changing their ecological structures and functioning, reduce habitats, species diversity and richness. They are characterized by special adaptations to persist, mature and spread. The Lake Nakuru National Park (LNNP) is a closed ecosystem, a Ramsar site and globally known for flamingoes. The park has high densities of herbivores including Cape buffalo (Syncerus caffer), Rothschild's giraffe (Giraffa camelopardalis), Burchell's zebra (Equus burchelli), Black rhino (Diceros bicornis) and White rhino (Ceratotherium simum) that depend on vegetation largely comprising of grasslands, closed shrublands and acacia forests. The park has been colonized by invasive species such as Solanum incanum, Ocimum suave, Sida schimperiana, Lippia javanica, Urtica massaica, Achyranthes aspera, Lantana trifolia and Tarchonanthus camphoratus. As a result, grasslands' quality and quantity, sustaining the high herbivore population have been greatly impacted and exacerbated by perennial and prolonged droughts. The Park has as a result regularly been affected by wildlife diseases which can be addressed if wildlife food quality and quantity is resolved.

Keywords: Invasive Species, Lake Nakuru, Remote Sensing

This study employs the use of remote sensing techniques for provision of critical information on invasive species park managers by identifying and mapping the extent of invasive species in the park. Thus, a rapid assessment of the invasive species was carried out for 5 days with minimum mapping unit at 10x10m to conform to Sentinel 2 imagery spatial resolution. A total of 51 training points of invasive species and 9 control points (other vegetation) were taken. Initial analysis detected seven invasive species including Solanum incanum, Tarchonanthus camphoratus, Senna didymobotrya, Ocimum suave, Hypoestes forskaolii, Achyranthes aspera and Urtica massaica. Six invasive species except (Tarchonanthus spp) are extensively established within the previously grasslanddominated areas predominantly inhabited by large grazers such as buffalo and zebra. Several maps were produced showing the extent of the invasive species in the park.

The impact of cattle foraging on habitat by Kenyan plains zebras (Equus quagga) and Grevy's zebras (E. grevyi).

Daniel Rubenstein^{1,2}, Annika Hsi1,2² and Monica Ngasike^{2,3} ¹Princeton University ²Mpala Research Center,

³ Karatina University

Corresponding author email address dir@princeton.edu

Abstract

Grazing by cattle can dramatically impact landscapes by reducing biomass. Yet as long as the soil remains moist, cattle grazing can also often stimulate new growth of nutritious and digestible vegetation. How wildlife, especially the two zebra species (*Equus quagga* and *Equus grevyi*) that inhabit the semi-arid regions of Kenya, choose where to forage on a grassland mosaic of grazed and abandoned swards, is poorly understood. By driving fixed loops bisecting varying sward types, we recorded where cattle and zebras grazed and vegetation characteristics of the swards. Overall, the two species of zebras responded to active and abandoned grazing sites very differently. Initially over 90% of the zebras used the area where cattle had ceased grazing with plains zebras grazing on the apex where vegetation was taller than along the hillslopes where both hippos and Grevy's zebras grazed. Once the cattle moved into the experimental area, Grevy's zebras associated closely with tightly bunched cattle herds where the grass remained short and green. Plains zebras, however, mostly remained on the abandoned grazing areas where biomass was accumulating. Although some moved to the experimental area, they only remained on the edge of a pastoralist herd that moved quickly and ranged widely, thus leaving the vegetation and not significantly different from the recovering swards in the abandoned cattle grazing areas. Zebras clearly adjust their habitat choices depending on the quantity and quality of a landscape. But their sensitivities and needs vary. That the endangered Grevy's zebra seeks out grazing lawns, suggests that sharing landscapes intensively grazed by livestock may not be the major problem limiting their recovery that conventional wisdom suggests.

Keywords: Cattle, Grazing, Grevy's zebras, Plains zebras,

The Influence of Elephants Foraging on Tree Species Regeneration and Abundance in Arabuko-Sokoke Forest, Kenya

Lynn Njeri^{1,2} ¹Wildlife Research and Training Institute ²Pwani University Email address: <u>njerilynn@gmail.com</u>

Abstract

Elephants play a significant role in structuring forest and savannah ecosystems. They influence plant regeneration patterns through their role in seed dispersal and germination and increasing habitat heterogeneity. Most research on the influence of elephants on tree regeneration patterns have focused on savannah habitats and lowland to mid altitude forests. This study investigated the role played by elephants in the regeneration and abundance of coastal forests' tree species, specifically, the influence of elephant foraging activities on seed predation, germination rates and seedling growth rates with focus on *Balanites maughamii* and *Manilkara sulcata*. It also examined the density and distribution of these trees species along elephant trails and non-elephant forest trails. The results from seed predation experiments revealed a higher predation rate (25%) near parent trees compared to 15% away from parent trees as predicted by the Janzen-Connell hypothesis. The seed germination experiment showed that seeds that passed through the gut had higher germination success of 74% and lower germination latency of 47 days as compared to a germination success of 11% and germination latency of 96 days for seeds that did not go through the elephant gut. There was no notable difference in seedling germination rates and latency between seeds that went through the elephant gut and planted in elephant dung as manure and those seeds that were planted without elephants' dung, suggesting limited effect of manure. The growth rate of *Balanites* seedlings from seeds planted with elephant dung manure had a growth rate 0.33 cm per day compared to 0.42 cm per day of the control but this difference was not statistically different. Results also revealed a higher density of elephant dispersed trees along

elephant trails compared to random trails. Results revealed that elephant foraging behavior had a positive influence on tree species regeneration in the Arabuko-Sokoke Forest.

Keywords: Elephants- Loxodonta Africana, Torch wood (Balanites maughamii), Dubard (Manilkara sulcata)

The role of environmental, structural and anthropogenic variables on underpass use by African savanna elephants (*Loxodonta africana*) in the Tsavo Conservation Area

Michael Koskei¹, Joseph Kolowski², George Wittemyer^{1,3}, Fredrick Lala⁴, Iain Douglas-Hamilton^{1,5} and Benson Okita-Ouma^{1,6} ¹Save The Elephants, P.O. Box 54667 Nairobi 00200, Kenya

²Smithsonian-Mason School of Conservation, Smithsonian Conservation Biology Institute, Front Royal, VA, USA ³Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA

⁴Wildlife Research and Training Institute P.O. Box 842-20117 Naivasha, Kenya

⁵Department of Zoology, Oxford University, Oxford, UK

⁶Wyss Academy for Nature at the University of Bern; Kochergasse 4, 3011 Bern

Corresponding author email address: koskei@savetheelephants.org, koskeimikal@gmail.com

Abstract

Wildlife crossing structures are effective interventions for mitigating fragmentation of habitats by linear infrastructure. The 2017 construction of a new railway cutting through the Tsavo Conservation Area (TCA), home to the largest elephant population in Kenya, affected wildlife movement and habitat connectivity. Although numerous studies have investigated the use of wildlife crossing structures by a wide range of species, few have focused on their use by megaherbivores. In this study, we examined use of 41 wildlife crossing structures by African savanna elephants (Loxodonta africana) along a 133 km section of new railway in Tsavo, Kenya. We used a generalized linear mixed modeling approach to assess the relationship between elephant crossing rate over 28 months between July 2017 to April 2021 and explanatory factors including crossing structure attributes, livestock presence and proximity to highways, water points and human settlement. We found that structural attributes of crossing structures were most strongly associated with the

elephant crossing rate, particularly height and its interaction with type of crossing structure (bridges, wildlife underpasses and culverts). Higher crossing structures were associated with higher crossing rate, with the largest influence of height at culverts and wildlife underpasses. Although bridges comprised only 19.5"% of the 41 available crossing structures, they accounted for a disproportionately high number of elephants crossing events (56"%). The results demonstrated the importance of bridges over designated crossing structures for elephants, with predicted seasonal counts of elephant crossings being 0.31 for average sized culverts, 2.88 for wildlife underpasses and 5.86 for bridges. The environmental and anthropogenic variables were not strongly associated with elephant crossing rate. Our findings have direct application for future siting and design of crossing structures across elephant ranges.

Keywords: African elephant, railway, Tsavo, underpass, wildlife crossing structure

Tracking carbon allocation to unravel how a mutualism and its breakdown affect tree dynamics in Laikipia, Kenya

Elizabeth G. Pringle^{1,2}, Todd M. Palmer^{2,3}, John S. Lemboi², John Mosiany², Gabriella M. Mizell^{1,2}, and Patrick D. Milligan^{1,2} ¹Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA ²Mpala Research Centre, Box 555-10400, Nanyuki, Kenya

³Department of Biology, University of Florida, Gainesville, Florida, USA

Corresponding author email address: epringle@unr.edu

Abstract

Most known mutualisms are based on the provisioning of fixed carbon from photosynthetic organisms to one or more partners. We must understand carbon allocation within such mutualisms to effectively model their role in the carbon cycle and their contribution to plant population dynamics. We study a protective mutualism between trees and defensive ants, which provides an ideal system for investigating the dynamics of tree carbon allocation to mutualists and its effects at landscape scales. We report on the use of ¹³C pulse-labeling to study carbon allocation by a foundational tree species (*Vachellia drepanolobium* acacias) in central Kenya, including allocation to its protective ant symbionts. This is an ideal system for studying carbon allocation in the context of mutualism because these trees are facing two major disturbances. The first is the loss

of large vertebrate herbivores, which are a necessary thirdparty species for the persistence of the ant-plant protective interaction. The second is the invasion of these savannas by the "big-headed ants" (*Pheidole megacephala*). *Pheidole megacephala* extirpates native ant species from *V. drepanolobium* trees but does not defend the trees from herbivores, leaving the trees vulnerable to catastrophic herbivore damage. We hypothesized that these disturbances would alter tree carbon allocation, with effects on tree reproduction and survival. Our preliminary results suggest that invasion by big-headed ants has large impacts on tree carbon-allocation strategies and the potential for survival of *V. drepanolobium* populations in these savanna systems.

Keywords: acacias, ant defensive mutualism, big-headed ant invasion, carbon cycle, herbivory

Transfrontier elephant (*Loxodonta africana*) movements in the Kidepo ecosystem: evidence for connectivity across Uganda, Kenya, and South Sudan

Purity Milgo¹, Festus Ihwagi¹ and Iain Douglas-Hamilton^{1 2} ¹Save The Elephants, Nairobi, Kenya ²Department of Zoology, University of Oxford, Oxford, UK Corresponding author email address: <u>purity@savetheelephants.org</u>

Abstract

Species moving over long distances, such as the African savannah elephant (*Loxodonta africana*), are especially vulnerable to habitat loss and fragmentation. This is particularly true in the Kidepo Valley region of northern Uganda - bordering South Sudan and Kenya. This remote and rarely surveyed region is home to a small population of elephants, which is thought to be increasingly isolated due to expanding human activities. However, how far this population roams is unclear - with some literature and folklore suggesting the existence of ancient corridors among the three countries. In order to preserve landscape-scale connectivity with other protected and unprotected areas, it is thus crucial to understand the extent and drivers of the Kidepo elephant movements. To this aim, eleven Kidepo elephants were collared and tracked at hourly intervals for a year, allowing us to investigate movement patterns and home range sizes. Surprisingly, we found that connectivity indeed still exists among all three countries, and that the home ranges of these elephants far exceed estimates from historical records. Moreover, movement analyses also indicated that several individuals from our sample size preferred spending time outside formally protected areas - in rangelands typically occupied by rural communities. Our findings will be

transfrontier conservation areas, and to manage humanelephant conflict on community land.

Keywords: home range, population range, transboundary movement, African savannah elephants, Kidepo Valley

Understanding the foraging behavior and dispersal patterns of red Colobus monkey (*Piliocolobus rufomitratus*, Peters 1879) populations in natural and agro-ecosystems forests in Tana River Primate National Reserve, Tana River County, Kenya

Rose Hakofa Abae, Jacqueline Benard, Bernard Ochieng and Mohamed Omar Wildlife Research & Training Institute, Coastal & Marine Ecosystem Research Centre, P. O Box 82144 – 80100, Mombasa, Corresponding author email address <u>rabae@wrti.go.ke</u> or <u>roseabae@gmail.com</u>

Abstract

Faced with habitat loss and forest fragmentation challenges, the Tana River Red Colobus (*Piliocolobus rufomitratus*), is at the verge of extinction. The Tana Red Colobus (*Piliocolobus rufomitratus*) occupies 34 out of the 77 riverine forest patches of the Lower Tana River, within a stretch of about 60 Km² of the Tana River Primate National Reserve (TRPNR). The reserve was established in 1976 for the conservation of the IUCN Red listed and second most threatened colobine in Africa. For year's conservation and restoration efforts were implemented in favour of the species populations in the protected natural habitats, with complete ignorance of a decade of information on the species populations in the non-protected agroecosystems situated in the North and South of the TRPNR. This study attempts to evaluate the implications of the ignored agroecosystems by assessing possible incentives for the species co-existence with human populations; the range limits for red colobus (*Piliocolobus rufomitratus*) to colonize distant forest patches, and understand the foraging behavior and strategies of the Tana River red colobus (*Piliocolobus rufomitratus*). The findings of the study indicate possible shifts in foraging behavior of the species, with implications on the possibilities of range and habitats expansion. This may also suggest critical management strategies to limit and eliminate potential human wildlife conflict scenarios.

Keywords: Red Colobus (*Piliocolobus rufomitratus*), Tana River Primate National Reserve, Agroecosystems, Habitat loss, Forest fragmentation

Young male elephants – dispersal and exploration in Amboseli

Vicki Fishlock¹, Lydia Tiller¹, Norah Njiraini¹, Catherine Sayialel¹, Cynthia Moss¹, Shadrack Ngene², Joseph Mukeka², Patrick Omondi² & Phyllis C Lee¹

¹Amboseli Elephant Research Project, Amboseli Trust for Elephants, PO Box 15135-00509, Langata, Nairobi, Kenya ²Wildlife Research & Training Institute, PO Box 842-201117, Naivasha, Kenya.

Corresponding author email address: vfishlock@elephanttrust.org

Abstract

Young male elephants undertake both social and locational dispersal when transitioning from their natal family into independent adult life. Most research on male ranging focuses on males already in adulthood, where strategies centre on growth, competition, and reproductive opportunities, or on pressures at the human-elephant interface such as crop foraging or fence breaking. However, the shift from family to adult strategy is a prolonged process, and the social and ecological choices made during this phase open up new ranging areas and provide bridges between populations. In Amboseli we have documented independence for 611 males

born in Amboseli families since the start of the study in 1972. These males have exhibited a variety of dispersal behaviours. We collared 8 males to study ranging during this critical and high-risk life-history phase. Here we present three years of data on young male ranging strategies; link this to the knowledge we have from our long-term monitoring; and show the extensive connectivity that remains around Amboseli, including the first documented elephant movement from Amboseli to Maasai Mara. We discuss our results in the light of habitat transformation and conservation challenges, and how these young males likely influence the human-elephant interface.

Sub-theme: Approaches to Enhance Human-Wildlife Coexistence in Human-dominated Landscapes

Impact of drought and development on the effectiveness of beehive fences as elephant deterrents over nine years.

King, L.E.^{1,2}, Tiller, L.¹, Mwambingu, E.³, Nzumu, H.³, Serem, E.¹, Mugo, G.¹, Raja, N.¹, Brennan, E.¹, Wanjala, D.¹, Ndombi, V.¹, Lala, F.⁴, Pope, F.¹, and Douglas-Hamilton, I.^{1,2}

¹Save the Elephants, P.O. Box 54667, Nairobi, Kenya ²Department of Zoology, University of Oxford, Oxford, OX1 3PS, U.K.

³Mwakoma Village, Sagalla, Taita-Taveta County, Kenya

⁴Kenya Wildlife Service, Tsavo East National Park, P.O. Box 14–80300, Voi, Kenya

Corresponding author email address: lucy@savetheelephants.org

Abstract

Human-elephant conflict is growing in Africa as both the human populace and development increases creating disturbance to both elephant habitats and migration corridors. Finding socially acceptable, economically viable, farmer-managed elephant deterrents is a priority to help turn human-elephant conflict into coexistence. Beehive fences have been trialled in Kenya since 2007 with some success but all studies have looked at small sample sizes over a short time period. Our study analyses the behaviour of 3,999 elephants that approached or attempted to enter a network of beehive fence protected farms over almost 9-years on the border of Tsavo East National Park. Although climatic and landscape conditions varied dramatically over six peak crop growing seasons (Nov-January 2014-2020) the beehive fences kept between 78.3% and 86.3% of elephants out of the farms during their most attractive periods of crop production. The mean deterrent rate over all 9 years, including

an extended period of drought mid-way through the study, saw 74% of all elephants deterred from farm plots protected by beehive fences. The beehive fences produced just over one ton of honey for the 26 farms engaged in the study boosting income for the farmers by \$2,250. The drought caused a 75% reduction in honey production for 3 years after the drought and negatively impacted the effectiveness of the beehive fence when elephant visits resumed due to poorer hive occupation rates. Our study suggests that although beehive fences are very effective at reducing up to 86.3% of elephant crop-raids during peak crop seasons when good rainfall has occurred, any increase in the frequency and duration of droughts and/or warmer/drier conditions in the future could negatively impact the effectiveness of beehive fences as a successful farmermanaged human-elephant coexistence tool.

Late Holocene human interactions with the landscape in Eastern Africa

Stephen M. Rucina¹, Robert Marchant², David Ryves³, Katie Loakes³

¹Department of Earth sciences, Palynology and Palaeobotany, National Museums of Kenya, P.O. Box 40658 00100 Nairobi Kenya

²Department of Environment and Geography, University of York, York UK ³Centre for Hydrological and Ecosystem Science, Department of Geography Loughborough University Loughborough Leicestershire LE11 3TU UK

Corresponding author email address: stephenrucina@yahoo.com or smathai@museum.or.ke

Abstract

Pollen studies in eastern Africa document the broad patterns of ecosystem change during the late Holocene. Although the principal patterns of reconstructed ecosystem changes are broadly coherent across space, there is considerable uncertainty on the timing of events, often due to a combination of limited sampling resolution and relatively poorly constrained chronologies. Further, the signatures of climatic and human impacts on eastern African vegetation remain difficult to disentangle. As a result, data on the last few thousand years, when humans have increasingly impacted on ecosystem are not sufficiently resolved or robust to constrain our understanding of often complex and subtle signals of environmental change. In this context, we present results of high-resolution pollen analysis on the 3400-year core recovered from Lake Done Ella in Gamo, Ethiopia, a lake in the foothills of highly populated site in the Ethiopian highlands. The record of vegetation change presented here provides a benchmark to constrain the timing and relative magnitude of climatic and historical human impacts associated with human interactions on the tropical ecosystems of eastern Africa.

Keywords: Holocene, human impacts, pollen, vegetation

Nature and extent of human- hippopotamus Conflict in Busega District, North- Western Tanzania

Evaline J. Munisi, Janemary Ntalwila, Julius Keyyu, Emmanuel H. Masenga, Richard Lyamuya, Angela Mwakatobe, Maulidi Mdaki, Habibu Muna and Rajabu Mikole

Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania

Corresponding author email address: richard.lyamuya@tawiri.or.tz

Abstract

Hippopotamuses are the third largest terrestrial mammal that are highly threatened by widespread poaching, habitat loss and fragmentation. Human-Hippopotamus Conflict (HHC) is a complex interactions between hippopotamus and human, which often results into detrimental impacts to both species. A well understanding of HHC improves effective mitigation strategies and promotes people's wellbeing. The current study assesses the extent and type of damage caused by hippopotamus in four HHC hotspots wards in Busega district and explores possible conflict mitigation solutions so as to enable conciliatory cohabitation between hippopotamus and human. A total of 344 people were interviewed in 12 villages using semi structured questionnaire, focused group discussions and key informant interview and analyzed using descriptive statistics. About 86.6% of the respondents recorded that hippopotamus was present in the study area and about 55.8% have had encountered hippopotamus attack. The results indicated that the major conflict caused by hippopotamus was crops raiding (78.78% respondents), but human death and injury were also reported more often during the interviews. The study found that maize, sweet potatoes, cassava and tomatoes were among the mostly grown and the most raided crops at their early and mid-stage of development. Preventive measures currently undertaken involve traditional scare-away techniques such as making noise by shouting, guarding farms, beating drums and tins, lighting fires, fences, using torches and throwing stones. The HHC victims have suggested mitigation measures like culling (66%), simply drive away (8%), building ranger posts close to water bodies (7%), hippopotamus translocation (7%), government intervention (5%), education on HHC mitigation (3%), fencing water bodies (2%) and stop cultivation near water bodies (2%). This study highlights the necessity to implement the mitigation measures in order to resolve the conflict between hippopotamuses and local community in Busega district and to promote the conservation of this species in the study area.

Keywords: Human-hippopotamus conflict, hippopotamus, Tanzania, crop damage, mitigation measures, Lake Victoria,

The effectiveness of bomas with wire-fencing and lights at deterring livestock depredation and its influence on pastoralists' attitudes towards carnivore conservation in Northern Kenya.

Ambrose Letoluai¹, Laiyon Lenguya^{1,2}, Nicholas Pilfold³, Kirstie Ruppert³, and Tomas Pickering³

¹Uhifadhi wa Chui at Loisaba Conservancy, Laikipia County, Kenya

²University of Nairobi, School of Biological Sciences, Nairobi, Kenya

³Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, USA

Corresponding author email address; sdzgleopard@gmail.com

Abstract

Kenya's rangelands are home to pastoral people, their livestock, and large carnivores, such as hyenas (Crocuta Crocuta) and leopards (Panthera pardus) which frequently come into conflict via livestock depredation events. Livestock depredation fuels people's resentment towards predators and conservation efforts, and occasionally leads to pastoralists killing carnivores in retaliation. To better understand what types of carnivorelivestock attacks are occurring from March 2018 to June 2022 our Leopard Conservation program (Uhifadhi wa Chui) monitored all livestock depredation events across six community areas, which included ~760 households with shoat bomas, neighboring Loisaba and Mpala Conservancies in Laikipia, Isiolo, and Samburu Counties. From June 2019 to March 2021, we assisted 161 households install 82 light-deterrents and replaced 81 bush-bomas with wire-fencing for their shoat bomas. Our before-after-control-intervention study allowed us to evaluate the effectiveness of these two types of interventions (lights and wire-fences) at reducing livestock depredation events in

bomas. During the 4 years of monitoring, we recorded over 3000 livestock depredation events inside and outside of bomas, averaging about 60 attacks per month, with 40% due to hyenas and 36% due to leopards. Our results show both interventions to be highly effective when properly installed, with wire-fencing more effective than light-deterrents. After the monitoring period we did a follow-up survey with participating households and neighboring control households to evaluate pastoralists' experiences with the interventions and whether it changed their attitudes towards carnivores. Participants in the intervention study valued direct and indirect benefits of better protecting their livestock and showed greater tolerance towards carnivores and support for carnivore conservation; however, households identified ways to improve the interventions and participating households perceived an increase in day-time livestock depredation. This increase in the proportion of daytime attacks does not appear to be an overall trend in our conflict monitoring assessment.

Keywords: Community conservancy, human-wildlife conflict and coexistence, leopard (Panthera pardus), livestock

The Elephant Queen: can a nature documentary improve tolerance for elephants?

Williams, H.F.^{*,2}, Leneuiyia, K.L^{1,3}, Mwalavo, B^{#1}, Serem, G.^{#1}, Sempeyo, V.¹, Pope, F.¹, King, L.E.^{1,2} and Verissimo, D² ¹Save the Elephants, P.O. Box 54667, Nairobi, Kenya

²Department of Zoology, University of Oxford, Oxford, United Kingdom

³Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent CT2 7NR, U.K.

⁵Department of Biology, University of Oxford, Oxford, OX1 3PS, U.K.

Corresponding author email address: harryfonsecawilliams@gmail.com

Abstract

Human-elephant conflict represents one of the more intricate cases of human-wildlife interaction, posing a significant hurdle for wildlife preservation. Numerous strategies have been implemented to separate humans and elephants, yet initiatives aimed at promoting coexistence between the two species are limited. This research evaluates whether a wildlife documentary, The Elephant Queen (TEQ), can inspire tolerance in communities residing near elephant populations (Loxodonta africana). Prior to and after screening the film via mobile cinema in Southern Kenya, we gathered data through questionnaires and interviews. Using a robust double ordinal regression analysis, we applied 357 matching specifications to quantify the impact of viewing TEQ on six factors identified as key drivers of tolerance towards wildlife according to the Hazard Acceptance model. We observed that students aged 16-18 demonstrated an increase in knowledge (mean effect size=0.27) and affection (mean effect size=0.17) for elephants and expressed a greater appreciation for the benefits of elephants (mean effect size=0.26) after watching TEQ. Community members aged 16-80 also exhibited increased knowledge (mean effect size=0.21) and recognition of the benefits of elephants (mean effect size=0.15), but they reported a more profound understanding of the challenges of living alongside elephants after viewing the film (mean effect size=-0.11). A follow-up survey conducted after 90 days indicated a significant rise in community "affection" for elephants (mean effect size=0.11), though the costs, benefits, and knowledge initially gained diminished over time to become insignificant. These findings suggest that wildlife documentaries could prove instrumental in inspiring a younger audience. However, the impact on an adult audience presented a more nuanced picture and some effects were short-term, lasting less than three months.

Keywords: Behaviour change; coexistence; human-elephant conflict; impact assessment.

Sub-theme: Approaches to Climate Change Mitigation and Adaptability

Are they the key to coral reef resilience? A temporal study from Kenya

Said, Hashim Omar¹, Vanreusel, Ann², Munga, Cosmus Nzaka³, Mohamed, Mohamed Omar Said⁴ ¹WWF, Marine and Coastal Landscapes Programme,

²Faculty of Sciences, Department of Biology, Gent University, Marine Biology Group, Krijgslaan 281-S8, 9000 Gent, Belgium ³Environment and health sciences, Technical University of Mombasa,

⁴Wildlife Research & Training Institute, Coastal & Marine Ecosystem Research Centre, P. O Box 82144 – 80100, Mombasa. Corresponding author email address: msaid@wrti.go.ke

Abstract

Coral reefs provide a great deal of goods and services that support socioeconomic systems along tropical coasts throughout the world. However, these systems face a plethora of threats ranging from localized pressures, such as overfishing, sediment loading and nutrient enrichment, to global pressures, such as pulse ocean warming events which result in coral bleaching. Research has shown that MPAs have the capacity to increase coral reef resilience by increasing species richness, which promotes inherent ecological functions that are crucial for the longevity of coral reefs, while reducing the localized pressures. This study, therefore, sheds light on 3 MPAs in Kenya (Malindi, Mombasa and Kisite) located on a gradient of localized anthropogenic stressors. The ability of the MPAs to offset the impacts of bleaching was tested based on analysis of fish family composition and abundance and benthic substrate cover composition. Univariate and multivariate tools were thus applied to long term monitoring data between 2005 to 2018. The results showed Kisite to have no reaction to climateinduced warming, which could indicate higher resilience owing to relatively lower anthropogenic stressors in its vicinity. Fish and benthic substrate cover in Mombasa MPA, however, exhibited a significant difference in the bleaching years of 2005, 2006 and 2013. Since 2006 was not a bleaching year, a lag in recovery is suspected. Similar results were shown for fish in Malindi, except for 2006, which showed no significant difference to the other non-bleaching years. In the MPAs of both Mombasa and Malindi, an inverse relationship was shown between Acanthuridae and Siganidae, where the former was higher in bleaching years, though only Malindi showed statistical significance. This could be an indication of response diversity in the MPAs, which might have promoted recovery in post-bleaching years. Furthermore, Mombasa MPA had more prominent algal turf and rubble in 2005 and 2006, whereas 2013 showed higher prevalence of macroalgae. This could demonstrate a gradual phase-shift towards an algal dominated system for this MPA.

Keywords: Coral reef ecology, Marine Protected Area, Coral bleaching, herbivory, sea urchin, bioerosion, Coral reef trends, Kenya

Assessing the Aberdare Fire Incidence in Kenya: Causes, Impacts, and Multistakeholder-Based Approaches for Effective Mitigation

Jared Asenwa Lumbasi and Peris Lare Wildlife Research and Training Institute Corresponding author email address: jlumbasi@wrti.go.ke)

Abstract

The Aberdare fire incidence in Kenya has become a recurring environmental challenge, threatening the delicate balance of the Aberdare ecosystem. This abstract aims to contribute to the upcoming scientific conference in Naivasha by providing insights into the causes, impacts, and multi-stakeholderbased approaches for effective mitigation of the Aberdare fire incidents. Through a multidisciplinary lens, this research delves into the factors contributing to the Aberdare fire incidence, encompassing both natural and human-induced elements. The study analyzes the role of climatic conditions, vegetation dynamics, land-use practices, and socio-economic factors in shaping fire regimes in the Aberdare region. Furthermore, this research investigates the ecological and socio-economic impacts of Aberdare fire incidents. It examines the effects of fires on biodiversity, ecosystem services, water resources, and tourism. To address the challenges posed by the Aberdare fire incidence, this abstract presents multistakeholder-based approaches for effective fire mitigation. It highlights the

Keywords: Aberdare, causes, ecology, fire, Kenya.

significance of stakeholder involvement in preventing, managing, and suppressing fires in the Aberdare ecosystem. The findings of this study have practical implications for policymakers, park managers, and local communities in the Aberdare region. The research provides valuable insights for the development of integrated fire management strategies that combine scientific knowledge with traditional practices. These strategies aim to enhance fire prevention, early detection, and timely response mechanisms in order to minimize the occurrence and impacts of Aberdare fire incidents. By presenting this abstract at the conference, we hope to engage with fellow researchers, scientists, and stakeholders to foster meaningful discussions, exchange ideas, and explore collaborative opportunities for addressing the Aberdare fire incidence. This research contributes to the growing body of knowledge on fire ecology, sustainable land management, and multistakeholder-based approaches for effective fire mitigation in the Kenyan context.

Assessment of vegetation changes in Kilombe Caldera, Baringo ounty Kenya; inferences from micro-botanical remains and current vegetation.

Rebecca Muthoni Muriuki^{1,2}, Samuel Kiboi², Prof. Nathan Gichuki², and Stephen Rucina¹

¹Earth Sciences Department, National Museums of Kenya,

²University of Nairobi, School of Biological Sciences

Correspondence- author email address: rbcmuthoni3@gmail.com

Abstract

Human interactions with landscape and climate changes played roles in shaping paleo-vegetation and impacting paleoenvironments. This study explores effects of climate change and anthropogenic activities on paleo and current vegetation in Kilombe caldera, Baringo County, Kenya. Multiproxy analysis using plants micro-botanical remains (pollen, phytoliths, and charcoal) was adopted to reconstruct past vegetation. 42 sediments samples collected in a pit were processed using specific acids /alkali, paleo data obtained was analysed using Tilia program and Cluster analysis. Current vegetation was sampled from 9 transects using stratified random sampling method. Identification, tallying and recording of all plants species was done. Species abundance, frequencies, density and structural composition into lifeforms was calculated to determine species variation in composition. Spatial distribution along environmental gradient was also determined. Paleo data results indicated existence of dry montane forest represented by Juniperus and Podocarpus, Shrubs and herbaceous represented by Amaranthaceae, while aquatics by Typha. Current vegetation data showed gradual

succession from primary to secondary vegetation. Some plant species documented in paleo data were not found in current vegetation, similarly, few plant species represented in current vegetation were not represented in paleo data e.g Diospyros abyssinica. Consequently, some species were over-represented in current vegetation e.g Dodonaea viscosa. Paleo-data analysis indicated prior to human settlements, was existence of relatively open woodland with abundant assemblages of grass phytoliths which indicated cool /warm temperate past environment. Human activities were reflected in paleodata by presence of cereals in phytoliths data, and pollen grains e.g Zea mays. Main drivers of changes were past patterns of climate variability and human activities, like livestock keeping, fire and agriculture. This research demonstrated existence of long-term human-mediated changes and climate driven changes. Amore detailed study is required to establish full impacts of anthropogenic activities on ecologically and economically important plant species that have disappeared from Kilombe caldera.

Keywords: Landscape, Micro-botanical, Paleo-data Paleo-environment, Paleo-vegetation

Sub-theme: Changes in Wildlife Population Trends and Dynamics

Population distribution and abundance of the common hippopotamus (Hippopotamus amphibious) in Lakes Naivasha and Nakuru, Kenya.

¹Edebe J., ¹Bett A., ¹Nyunja J., ²Maina P., & ¹Silali E.

¹Wildlife Research and Training Institute, Inland Waters and Wetlands Research Center, P.O Box 842-20117, Naivasha, Kenya ²Wildlife Research and Training Institute, Wildlife Resource Center and Information Management, P.O Box 842-20117, Naivasha, Kenya

Corresponding author email address: jedebe@wrti.go.ke

Abstract

The common hippopotamus *Hippopotamus amphibius* is a mega-herbivore which may greatly modify its habitat and cause major conflicts with humans. It is listed by IUCN as vulnerable and in appendix II of CITES. Despite its conservation status, there are few studies focusing on the hippo in many parts of its range. A dry season survey was conducted in December 2022 in Lake Naivasha and adjacent wetlands and Lake Nakuru to establish the population size, spatial distribution and identify key threats to inform management actions. Ground count method using boats and vehicles was used to estimate its population size. Key threats along the transects were documented and their spatial locations recorded using GPS. 686 individual Hippos were counted in Lake Naivasha and 35 in Lake Nakuru. In Lake

Naivasha, large hippo populations were observed in Malewa bay, Oloidien and Crescent Island while in Lake Nakuru most hippos were sighted at the Sarova-Murram sections, shoreline, and at Old main gate-Njoro river mouth. The threats observed to their habitats included illegal fishing, riparian habitat destruction and encroachment. A regular hippo monitoring programme and integration with hippo conflict data are recommended to understand the population dynamics to inform the formulation of appropriate conservation strategies. The identified threats and illegal activities need to be addressed. Community sensitization programmes can be enhanced by the relevant management agencies using a multi-agency approach.

Keywords: Community sensitization, habitat, multi-agency approach. population dynamics, threats

Rural socioeconomic trends, and not ecological competition with livestock, as a main driver of wildlife declines in East Africa.

Lucas Elius Yamat¹, Iñaki Abella-Gutiérrez², and Pablo Manzano^{1,3,4,5}

- ¹ Basque Centre for Climate Change (BC3), Leioa, Spain
- ² Asociación Biomas, Nairobi, Kenya
- ³ Ikerbasque Basque Foundation of Science, Bilbao, Spain

⁴ Global Change and Conservation Lab, Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland

⁵ Helsinki Institute of Sustainability Science (HELSUS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland

Corresponding author email address: https://www.ucas.yamat@bc3research.org

Abstract

In recent years, extreme wildlife declines have been documented for large parts of Africa, creating big concern among conservationists. While such declines have been linked to livestock outcompeting wild herbivores, the human dimension of the problem has been generally overlooked. Our study analyzes and re-interprets existing data for East Africa, with Kenya as a source of data at the larger scale, and the Ngorongoro Conservations Area in Tanzania at the smaller scale. Our analysis incorporates agronomic methodologies by using biomass and Tropical Livestock Units as the main tool to evaluate herbivore trends, and we feature the emerging social trends which can also explain wildlife declines. We also examine published evidences on potential coexistence between wildlife and local livestock, and the underlying ecological processes. Our findings revealed a stable domestic biomass among domestic herbivores in East Africa in the long term,

disproving the claims for increased competition with wildlife. Observed increases in livestock heads are due to a transition from cattle to small ruminants. This trend points to increasing poverty levels among pastoralists as a powerful structuring factor, confirmed by an increased urban ownership of rural livestock. Opportunistic hunting, to avoid encroaching on the herd, is therefore likely to be impacting wildlife numbers. To address this crisis, reducing economic and social pressures by tackling poverty, unemployment, and women's empowerment is vital. Access to formal education could be a crucial tool, as it facilitates incorporation into e.g. ecotourism ventures, and provides valuable benefits to local stakeholders. Specific field studies should be conducted that capture the multidisciplinary factors we describe here. A full integration of human dimensions into ecosystem perspectives would yield more sound and sustainable conservation models.

Keywords: Coexistence, Competition, Decline, East Africa, Human Dimension.

Spatially-explicit future landscape scenarios for population growth of the African elephant (*Loxodonta africana*) in African

Sospeter Kiambi¹², David Roberts², David Seaman² and Robert B. Smith²

¹Wildlife Research and Training Institute (WRTI), P. O Box 842-20117, Naivasha, Kenya. ²Durrell Institute of Conservation and Ecology (DICE), School of Anthropology and Conservation, University of Kent, Canterbury, UK

Corresponding author email address; skiambi@wrti.go.ke or sk820@uk.ca.uk

Abstract

The distribution and abundance of the African elephant (Loxodonta africana) is primarily determined by ecological and anthropogenic factors. Vegetation types and productivity, elevation, temperature, rainfall and water are among the key ecological factors while human population density, the level of human socio-economic development, literacy levels and existing conservation policies are the key anthropogenic factors influencing the occurrence and abundance of elephants. Various Species Distribution Modelling (SDM) approaching have been used for predictive habitat distribution modelling. These approaches have generated valuable scientific information on the overall suitable habitat for the target species. However, the results from SDMs are rather cumbersome for management action. In addition to SDM, here we incorporate a robust approach mimicking dispersal by using the RangeShifter® software, an individual-based spatially explicit and stochastic model that integrates population dynamics with movement behaviour to simulate stochastic and stepwise dispersal. To

develop the habitat quality map, we ran a total of 28 explanatory variables both biophysical and anthropogenic through the Variance Inflation Factor to check for multi-collinearity, then fitted four SDM algorithms i.e. boosted regression trees, generalised additive models, maximum entropy and random forest and finally constructed an ensemble based on the Area Under the Curve (AUC) for the four algorithms. The movement costs map was based on the proportion of land cover under farming, water, bare ground and built up. At the maximum threshold for sensitivity and specificity, the SDM predicted the suitable elephant habitat of 9,908,040.9km². The mechanistic movement model predicted a 54% occupancy of the suitable elephant habitat by end of the 21 Century. It further predicted a 2.5% annual population growth for the continental elephant population by 2100. Additionally, since we adopted the least cost path for movement, the mechanistic model identifies key dispersal areas and population connectivity routes that can help prioritize management action.

Keywords: African elephant, connectivity, Least Cost Path, RangeShifter, species, distribution modelling

Temporal dynamics in observations of rare antelope endemic to Shimba Hills National Reserve, Kenya

Benard Ochieng, Jacquiline Benard, Rose Abae, Lynn Njeri and Mohammed Omar Wildlife Research and Training Institute, Coastal and Marine Ecosystems Research Centre P. O. Box 30 – 80403 Kwale, Kenya Corresponding author email address: <u>bowoko@wrti.go.ke</u> or bochieng14@gmail.com

Abstract

We present results of temporal (two dry - wet season counts), and two months routine monitoring of sable antelope (*Hippotragus niger* roosevelti) population in Shimba Hills National Reserve. The initiative was in response to challenges involved in sighting the antelope at certain time of the year in the reserve. The shy nature of the antelope impeded our efforts to describe the population during the count. We therefore routinely monitored the population for two months as well. Total count involved vehicles and foot based systematic searching for the antelopes by six teams distributed across six blocks established within sable habitats in the reserve in open glades in the morning (0600-1000hrs) and evening (1600-1830hrs), when sables are typically active. Routine monitoring is relatively more intensive, permitting collection of substantial sex and age structures, herd identity, description and size information on the population. Both routine monitoring and total counts were aided by GPS receivers, binoculars and digital cameras. Seasonal total counts conducted in March 2023, and in November and January 2022 recorded 36, 30 and 18 sables respectively. Two months routine monitoring recorded 32 and 31 sables in April and March 2022 respectively. Sex structure analysis from routine monitoring established male to female sex ratio of 1:2 for both April and March. Similar analysis was not performed for the total counts due to inadequate population structure data. The sex ratios indicate potential for breeding in the population since female-biased sex ratios are viable for the polygamous sable antelope. The findings underscore the need to use different methods to monitor sable population, including deployment of modern ecological monitoring technologies.

Keywords: seasonal counts, routine monitoring, sable antelope, Shimba Hills national reserve

The Social Structure and Demographic Status of *Panthera Leo* (Lion) Population In Meru National Park, Kenya.

Alois Mweu^{1*}, Penny Banham², Newton Simiyu¹, Francis Kago¹, Irene Kanga¹, Linda Kimotho¹, Victor Cheryuot¹, Moses Nyaga¹, Moses Gitonga¹, Joseph Hedges², Tim Oloo¹, Nikki Tagg² and Michael Mugo¹

¹Born Free Kenya, Karen, Nairobi, Kenya.

²The Born Free Foundation, 2nd Floor Frazer House, 14 Carfax, Horsham RH12 1ER, UK.

Corresponding author email address: alois@bornfree.or.ke

Abstract

Pride of Meru Programme (POM), overarching aim is to safeguard and protect viable ecologically functioning *Panthera leo* (lion) populations, their prey, and habitat in the Meru Conservation Area, via enhanced coexistence and protection. The key objective is to sustainably conserve *P. leo* by determining their current and long-term status, identifying the major threats that could be causing declines in the current *P. leo* population and developing community-led sustainable nature-based solutions to emerging conservation challenges not only for lions and the people, but also for the entire ecosystem. We actively monitor *P. leo* through routine monitoring of individual lions, their pride, and other wildlife species. We adopt the use of opportunistic sightings, tracking of spoors, and using innovative methodologies such as camera traps and GPS enabled collars to obtain real-time location updates and other essential data for effective conservation action. The *P. leo* monitoring data has been collected since 2016. This data includes information on the pride composition, age, sex, births, and deaths. From 2021, the data has been collected using survey123 and quick capture. This monitoring has built a detailed database that contains extensive information about the social structure and demographic status of *P. leo* population in Meru National Park. The current *P. leo* population is estimated at 93, with 73 individual lions being >1 year and 20 less than one year old.

Estimated density of lions above one year is 10.7 lions per 100 km² while the sex ratio of female to male lions is 1.43, with a cub to female ratio of 0.97. The population comprises four prides (Bisanadi, Elsa, Mulika and Virginia). Additionally, there

are groups and coalitions. Through long-term monitoring, we can generate valuable data on demographics, ecology, and behavior which inform strategic management and conservation of this important canid species.

Keywords: Panthera leo, Meru Conservation Area, monitoring, social structure, demographic status.

Wildlife and livestock in the Samburu and Buffalo Springs National Reserves: insights from 17 years of monitoring

Giacomo D'Ammando^{1*}, Daud Abdi¹, David Daballen¹, Royman Leteipa¹, Gilbert Sabinga¹, Chris Thouless¹, Iain Douglas-Hamilton¹ and George Wittemyer²

¹Save the Elephants, Nairobi, Kenya.

²Colorado State University, Fort Collins, Colorado, USA.

Corresponding author email address: giacomo@savetheelephants.org

Abstract

The ecological integrity and economic viability of the Samburu and Buffalo Springs National Reserves has been negatively affected by decades of insecurity, increasing livestock invasions, and declining tourist numbers. Combined with emerging threats such as loss of landscape connectivity and disruption of seasonal rainfall, this could jeopardize the role of the two reserves as safe havens for endangered species in northern Kenya. Here we used 17 years of road count data to identify how ecological and anthropogenic factors might have interacted to affect the abundance and diversity of large mammals in the two reserves over time. We found that, although some wild herbivores had increased in numbers over the years, others (e.g. buffalo Syncerus caffer; waterbuck Kobus ellipsiprymnus) had declined almost to local extinction, with a significant loss in species diversity. Meanwhile, the abundance of livestock inside the reserves had increased to unprecedented levels, triggering

behavioural avoidance by some species (e.g. African elephant *Loxodonta africana*). We also found that, although several ungulates used the reserves as dry season refuges, three species classified as "endangered" (elephant, reticulated giraffe *Giraffa camelopardalis*, and beisa oryx (*Oryx beisa*) did not - and were reliant on unprotected land to acquire key resources during droughts. This suggests that the role of the reserves as safe havens for wildlife might have been compromised by livestock invasions, with the current protected area design possibly inadequate to effectively safeguard key resources for flagship species. In summary, our findings indicate the Samburu and Buffalo Springs National Reserves are increasingly affected by human-induced environmental changes, and provide a likely general scenario for the future of protected areas in the arid regions of northern Kenya.

Keywords: Elephants, population trends, protected area management, Samburu, Ungulates

Lion (*Panthera leo*) monitoring and community conservation within the Greater Mara Ecosystem

Kasaine Sankan¹, Michael Kaelo¹ and Niels Mogensen² ¹Kenya Wildlife Trust ²University of Nairobi.

Corresponding author email address: kasaine.sankan@kenyawildlifetrust.org,

Abstract

In 2016, a significant decline in lion populations in East Africa, specifically a 59% decrease between 1993 and 2014, was highlighted by the IUCN Red List of Threatened Species. The Maasai Mara ecosystem in Kenya, known for its strong lion presence and renowned wildlife viewing opportunities, reported a concerning 54% decline in lion numbers. This alarming trend also raised concerns about the declining cheetah populations. In response, the Kenya Wildlife Trust (KWT), a wildlife trust, established a science-based conservation project aimed at designing and implementing a long-term monitoring program for lions and cheetahs. Recognizing the limitations of previous estimation methods used in the Mara and across Africa, KWT adopted cutting-edge monitoring techniques initially employed for tiger monitoring and has been consistently deploying them annually to address specific conservation questions regarding lions and cheetahs. This talk will provide insights into KWT's experiences and demonstrate how a monitoring program, initially developed almost a decade ago to address key questions, has evolved into the longest-running study on

lion and cheetah trends in Kenya, utilizing the Spatially Explicit Capture-Recapture (SECR) methodology. In addition to the predator monitoring program, KWT recognizes the importance of community conservation efforts for the conservation of predators. Engaging and involving local communities in conservation activities is crucial for promoting coexistence and ensuring the long-term survival of lions and cheetahs. KWT has implemented community conservation initiatives aimed at raising awareness, providing education, and creating incentives for local communities to actively participate in predator conservation. These efforts involve collaborating with community leaders, organizing workshops and outreach programs, and supporting livelihood development projects that emphasize sustainable practices. By working hand in hand with communities, KWT aims to foster a sense of ownership and stewardship among the local population, fostering a positive environment for predator conservation and reducing human-wildlife conflicts.

Keywords: Community Conservation, lion monitoring, Masai Mara ecosystem, spatially explicit capture-recapture

Sub-theme: Use of Science for Harmonized Policy Engagement

Assessment of management effectiveness of the greater Mara and Mara triangle conservation area: the case of Masai Mara national reserve, Siana, Oloisukut, and Olkinyei conservancies

Judith Nyunja¹ and Ahmed Mbarak² ¹Wildlife Research and Training Institute ²World Wide Fund for Nature Corresponding author email address: <u>judithnyunja@gmail.com</u> or <u>jnyunja@wrti.go.ke</u>

Abstract

The Management Effectiveness Tracking Tool (METT) is a globally adopted tool used to monitor and track progress in achieving protected area management effectiveness targets worldwide. It helps in assessing the implementation of protected areas commitments under various environmental agreements. The tool consists of datasheets and an assessment form, which are completed in collaboration with key stakeholders. The datasheets gather information about the protected area, including its name, size, location, and a list of potential threats ranked by their impact. The assessment form comprises 38 questions grouped into different management elements. Each question is assigned a score ranging from 0 to 3, with higher scores indicating better management effectiveness. The total scores for each management element are converted to a percentage score. The results of the assessments reveal that the Siana Conservancy achieved the highest METT score (71.4%), making it the best-managed conservation area. It is followed by Olkinyei (69.9%), Masai Mara National Reserve (65.9%), and Oloisukut Conservancy (60.2%). All sites scored above 60%, indicating significant efforts toward sustainable management of these wildlife conservation areas. A closer look at the management elements shows that there is a strong planning framework in place for the conservation areas, with scores ranging from 76.2% to 81.0%, except for Oloisukut Conservancy, which scored the lowest at 52.4%. Inputs, such as resources and support, were also relatively high in the three conservation areas mentioned earlier, ranging from 61.1% to 72.2%, while Oloisukut Conservancy had the lowest score for inputs at 50.0%. The management elements related to processes and outputs scored above 60% for all conservation areas.

Siana Conservancy achieved the highest score of 73.3% for processes, while Masai Mara National Reserve had the highest score of 73.3% for outputs. Regarding outcomes, Siana and Oloisukut Conservancies scored the highest (83.3%), followed by Olkinyei (75.0%), and Masai Mara National Reserve scored the lowest (50.0%). Overall, the implementation status of the management elements is expected to contribute to favorable conservation outcomes. Siana Conservancy emerges as the best-managed area with the highest overall METT score (71.4%) and the highest score for conservation outcomes (83.3%). A more detailed assessment is recommended to explore the factors influencing the effective management of these conservation areas. The implementation of effective planning processes is strongly correlated with positive conservation outcomes, leading to higher overall METT scores. The major threats to the entire conservation area include natural habitat modifications, climate change, and residential and commercial developments. The key indicator species for the greater Mara and Mara Triangle are elephants, lions, cheetahs, leopards, giraffes, black rhinos, and wild dogs. There has been a significant decrease in their range and an increase in the extent of threats affecting them in the conservancies and the reserve. Siana Conservancy is particularly suitable for carnivores such as lions, cheetahs, and leopards, making it a refuge for these critical species. On the other hand, there is a decreasing range and increasing threats to riverine forests in Olkinyei, Oloisukut, and Masai Mara National Reserve. These findings emphasize the importance of effective management and conservation efforts to address threats and protect the diverse wildlife and habitats in the Mara region.

Keywords: Conservation areas, management, effectiveness

Comparative analysis of wildlife governance approaches in African countries.

Frida D. Obare^{1,2} ¹The McCormack School, College of Liberal Arts, University of Massachusetts Boston ²Kenya Wildlife Service Corresponding author email address: <u>Fridah.Obare001@umb.edu</u>

Abstract

The evolution of environmental politics since the second half of the 20th century has centered on anthropogenic existential threats to the environment and has elevated the issue of wildlife conservation as urgent. With its significant wildlife ecosystems, Africa has been one of the testing grounds for institutiondriven governance. The work of these wildlife institutions has considerable consequences for Africans whose compliance with the various measures has been deemed necessary for successful conservation ventures. Rarely have these wildlife institutions been studied, yet their form and governance structures, which they owe to colonial legacy, affect how millions of Africans live and subsist on wildlife resources. The traditions and culture of African communities have defined how to sustainably utilize wildlife as a common-pool resource. Increasingly, the colonial and subsequent postcolonial governments encroached into this way of life and enacted regulations and laws to govern wildlife as landed property through the austere framework of protected areas. This form of governance structure mostly happened without the consent of the communities adjacent

to these resources. Without such consent and the little comparative understanding of wildlife institutions that govern these vital resources, it is imperative to interrogate if they indeed exercise their authority to the expectations of African citizens. Confining and separating wildlife from African citizens has brought forth two problems: the persistent dispute about the utilization of these resources by the governors and the adjacent communities and the threats to wildlife emanating from this governance system of wildlife as landed property. Through legal analysis of the constitutions, wildlife policies, and laws of African countries and spatial analysis of land use and land cover change for 20 years, this study examines how wildlife institutions address these challenges. The findings indicate that countries with effective wildlife institutions have legal frameworks that promote participatory governance, enabling successful conservation efforts while ensuring the sustainable use of wildlife without endangering habitats and ecosystems. This analysis incorporates visual representations of spatial data to support these findings.

Evidenced-based decision support for guiding biodiversity conservation strategies associated with urban growth and infrastructural development in East Africa

Macharia, N. A.¹ and Patel N. V.² ¹Kenyatta University, Department of Geography. P.O. Box 43844-00100, Nairobi, Kenya ²Hirola Conservation Program, P. O. Box, 1774-70100, Garissa Kenya Corresponding author email address: <u>macharia.anthony@ku.ac.ke</u>

Abstract

Linear infrastructural development projects have been accelerating in East Africa, yet the degree of habitat fragmentation and its impact on biodiversity remains unclear. Insufficient data on biodiversity imperiled by such projects has continued to undermine biodiversity conservation efforts. This review explores the potential of deploying citizen science approaches in collecting biodiversity data and essential biodiversity metrics (EBM) that can provide spatial-explicit record and models for guiding conservation planning and mitigating risks of biodiversity loss associated with natural and anthropogenic factors at a variety of scales. We demonstrate using examples drawn from similar initiatives that citizen science platforms can address gaps in biodiversity data in East Africa, which can be combined with remotely sensed data to facilitate development of spatially explicit EBM for conservation planning, biodiversity management, and hazard mitigation. These metrics are essential for supporting evidence-based biodiversity assessment, monitoring, and restoration initiatives in the region.

Mainstreaming of Birds Conservation into Energy Sector-Lessons in Engaging in Energy Issues in Kenya

Paul Gacheru, James Mutunga, Richard Kipng'eno and Brian Otiego Nature Kenya

Corresponding author email address: species@naturekenya.org

Abstract

Kenya is a biodiversity Rich Country. There is growing demand for energy as the economy grows. With this increase demand of power production, comes with associated infrastructure which includes transmission lines and roads which have an impact on biodiversity. Balance of development demands and biodiversity conservation is critical. An assessment done on impact of power lines on bird communities has been carried out around systematically along the Rift Valley –Red Sea Flyway. Results indicate that high voltage transmission lines and local distribution power lines have negative impacts on birds through electrocution and collisions. Main drivers of electrocution and collision of birds with power lines is associated to power routing and designs of power line. Mainstreaming of bird and biodiversity into the energy sector is important. Tools and best practices exist for replication in Kenya. Utilisation bird sensitivity maps by energy sector players in planning and executing energy development.

Keywords: birds' conservation, Electrocution, Energy Sector, Flyway, and power lines

Morally Contested Conservation: Use of science for effective and inclusive policy implementation

B. Rono¹, D. Hare^{2,3,4}, L. Sibanda^{3,4,5}, S. Kulunge⁶, Y. Mutinhima⁷, D. Kimaili⁸, L. Mandoloma²,.

¹Department of Zoology and Entomology, Rhodes University;

²Department of Biology, Oxford University;

³Wildlife Conservation Research Unit, Oxford University;

⁴Department of Natural Resources and the Environment, Cornell University;

⁵Cheetah Conservation Project, Zimbabwe;

⁶Department of Wildlife Management, Sokoine University of Agriculture;

⁷Department of Wildlife Ecology and Conservation, Chinhoyi University of Technology;

⁸Department of Sociology and Anthropology, South Eastern Kenya University.

Corresponding author email address: betty.cono379@gmail.com

Abstract

Intensifying international debates over who should make decisions on wildlife conservation in Sub-Saharan Africa (SSA) brings to light several contested issues. Strong conservation policies have elicited diverse opinions among conservation actors, with apparently different views among actors from the Global North versus those from the Global South. For conservation policies to be inclusive and effective, there is need for platforms where all voices are taken into consideration, especially on controversial issues. The Morally Contested Conservation project (MCC) strives to link multiple voices through research on contested issues in conservation, collecting robust data to inform decisions from local to global scales. By casting a wider net to question sensitive issues such as the acceptability of militarised conservation, punishments

for wildlife crimes, ownership of wildlife among local versus different external groups across the world, enables policymakers to expand their lens of view beyond local or regional interest and address contentious issues that are rarely talked about. MCC is working in five different locations in SSA; in Southern Kenya – Northern Tanzania (SOKNOT) and Kavango–Zambezi (KAZA) regions combining on-the-ground data collection with online methods for respondents in urban areas of SSA, the UK and the USA. The ultimate goal of this work is to collect and synthesise data that can inform policy on contested issues in wildlife conservation using evidence, with the aim of driving discussions about the appropriate roles for local and external views on decisions over wildlife and economic development in SSA.

Keywords: Morally contested conservation, militarized conservation, Global North – Global South, Local Vs External views

The Greater Mara Monitoring Framework: a practical model for linking scientific evidence to management and policy needs in Kenya

Holly T. Dublin¹, Cindy Obath² and Jake Wall³

¹IUCN Eastern and Southern Africa Regional Office, Nairobi, Kenya

²One Mara Research Hub

³Mara Elephant Project

Corresponding author email address: holly.dublin@gmail.com or holly.dublin@iucn.org

Abstract

In parallel with the finalization and adoption of the Narok County Spatial Plan, the Greater Maasai Mara Ecosystem Management Plan and the Maasai Mara Reserve Management Plan over the past few years, work on collaboratively designing and developing a conceptual monitoring framework for the Greater Mara was undertaken over a 15-month period from February 2022 through May 2023. The process included virtual meetings, extensive one-on-one consultations and a series of feedback workshops. This process resulted in the completion of the Greater Mara Monitoring Framework (version 1) - or the GMMF (v1) - and its accompanying list of essential environmental, social, cultural and economic indicators, as well as a living, open-access inventory of datasets for the ecosystem. The GMMF is now poised to begin supporting management, policy and decision-making. By providing the Narok County Government, the Wildlife Training and Research Institute, the Maasai Mara Wildlife Conservancies Association and the Kenya Wildlife Service with data and information in support of their mandates, the GMMF(v1) offers a practical model for better linking the scientific evidence base to management and policy needs through regular monitoring of an agreed set of performance indicators. A better understanding of what data are being collected, by whom, over what timelines and at what spatial resolution together with closer collaboration between data providers and mandated data users and supported by the growing availability of advanced information technologies and platforms heralds a breakthrough for science-based management in this critical ecosystem, other important areas in Kenya and beyond.

Keywords: Adaptive management, Indicators, Maasai Mara, Monitoring, Policy engagement

Sub-theme: Approaches to Climate Change Mitigation and Adaptability

Impacts of a severe drought on the Samburu elephants

David Daballen¹, David Letitiya¹, David Lolchuraki¹, Iain Douglas-Hamilton¹, and George Wittemyer² ¹Save the Elephants, Nairobi, Kenya.

²Colorado State University, Fort Collins, Colorado, USA.

Corresponding author email address: <u>G.Wittemyer@coloradostate.edu</u>

Abstract

Population processes can be disproportionately impacted by extreme conditions. With climate change, years that experience vastly different levels of rain or temperatures from average are expected to increase across much of the world. Arid lands are particularly prone to extreme events. The arid lands of Northern Kenya experienced severe drought between 2021 and 2023. We summarize the impacts of this drought on the elephant population inhabiting the Samburu and Buffalo Springs National Reserves in northern Kenya. In the heart of the drought in 2022, we experienced high mortality among juveniles and older aged adults in the population. However, coinciding with the drought, the population experienced a birth pulse driven by above average rains in 2020. While mortality was above average, the birth pulse resulted in a net increase in the population despite the drought. We discuss the demographic and behavioral impacts of the drought for the elephants of northern Kenya.

Developing Drought Mitigation Measures for African Elephants (Loxodonta Africana-L) in The Tsavo Ecosystem, Kenya, By Understanding Long-Term Elephant Distribution and Mortality Patterns in Relation To NDVI, Vegetation, And Rainfall

David K. Korir, Fredrick O. Lala and Patrick Chiyo. Wildlife Research and Training Institute, P.O. Box842-20117, Naivasha, Kenya. Corresponding author email address: dkorir@wrti.go.ke

Abstract

Drought is a form of environmental stress that originates from a deficiency in precipitation over an extended period long enough to cause moisture deficiency, biotic loss, crop failure, loss of human and wildlife deaths, and cause general hardships. Drought has been a persistent cause of elephant mortality in the Tsavo ecosystem. It causes elephant mortality more directly through starvation, increases disease susceptibility, increases human-elephant conflict and associated elephant mortality, and increases elephant susceptibility to poaching as elephants move close to human habitation. The discordance in the distribution of forage and water resources needed for elephant survival during severe droughts has been linked to the increased vulnerability of elephants to drought-related mortality. We examined the temporal and spatial patterns of elephant mortality in relation to rainfall, Normalized Difference Vegetation Index, and waterholes. Through training, we also strengthened the capacity of KWS rangers on monitoring

elephant drought-related mortality. The normalized Difference Vegetation Index (NDVI) was used to predict the availability of forage for elephants in Tsavo. Remotely sensed images were analyzed using Google Earth Engine (GEE). Subsequently Maximum Entropy (MaxEnt) software, was used in the modeling. Over 60 elephants' lower jaws were measured to determine the age of the elephants that died during the 2018 to 2019 period. The results indicated that the Spatial and Temporal distribution of elephants was directly related to the distribution of water and availability of forage and rainfall patterns. The thrust of the analyses was the discordance in carcass distribution and elephant distribution. Since there were no disparities, the clustering of water points was seen to be a contributing factor in elephant deaths. We, therefore, recommend that the management should distribute the artificial water sources evenly in the protected area.

Keywords: Spatial-Temporal, GEE, elephant mortality, NDVI, MAXENT

Effects of Climate Change on Elephants Population in Amboseli National Park in Kenya

Lynnette Mwari Kiboro

Department of Wildlife Management, Wildlife Research and Training Institute. P.O Box 842-20117 Naivasha - Kenya

Corresponding author email address: lkiboro@wrti.go.ke

Abstract

Climate change is a long-term shift in temperatures and weather patterns. These shifts have been found to be natural and human induced. Human activities are the main drivers of climate change primarily due to the use of fossil fuels. Climate change is a big threat to biodiversity and natural ecosystems. Climate change is a major contributor to the loss of biodiversity especially large mammals like elephants. Increased water shortage as a result of climate change and the attendant persistent droughts, has been identified as a serious threat to the survival of large mammals. In Kenya, high mortality of African elephants (*Loxodanta africana*) especially in Amboseli national park has been an issue of great concern to the government and conservationists. Although studies have attributed the death of elephants to human wildlife conflict and poaching, there is scarcity of robust evidence on the relationship between climate change and elephants' population. Using time series data on elephants' population in Amboseli National Park and data on environmental changes in the park overtime, an attempt was made to analyze the relationship between elephants' population and climate change. The study established that drying of vegetation due to the high temperatures, elephants feeding behavior as well as drying of water points in areas mostly habited by elephants contributed significantly to elephants' population. The study recommends that conservation efforts of African elephants should focus on mitigating the adverse effects of climate change in the park such as drilling ground water that is powered by solar energy to ensure sustainability.

Keywords: Biodiversity, Climate change, Elephant, National Park

A million-year vegetation history and palaeoenvironmental record from the Lake Magadi Basin, Kenya Rift Valley

Veronica M. Muiruri¹, R. Bernhart Owen², Stephen M. Rucina1 and Andrew Cohen³

1Department of Earth Sciences, Palynology & Palaeobotany Section, National Museums of Kenya, P.O Box 45166 00100, Nairobi, Kenya

²Department of Geography, Hong Kong Baptist University, Kowloon Tong, Hong Kong

³Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA

Corresponding author email address:

Abstract

This study examines a one-million-year pollen record from a 194-m-long Lake Magadi core (HSPDP-MAG14-2A) in the south Kenya Rift Valley. The pollen indicates a general trend through the last 740 kyr from wetter conditions to generally drier environments. Grassland dominated with less common Podocarpus and Cyperaceae in a sparse flora between 1000 and 740 ka. Poaceae, woodland and herbaceous plants are common through the remaining core and abundant between 740 and 528 ka and after 200 ka. Pollen diversity increased after 200 ka. Podocarpus and Cyperaceae reached a peak abundance at ~575 ka with a subsequent decline that suggests a progressive increase in aridity, interrupted by wetter intervals. Podocarpus-dominated forests expanded and contracted many times during the Quaternary and document an anti-phased relationship with data from Lake Malawi. Similar anti-phased correlations are noted for herbaceous plants, suggesting that the two basins responded differently to the same climate or were influenced by contrasting climate regimes. Increases in macrocharcoal correlate with increasing pollen abundance and suggest wetter conditions. Data from the Magadi, Koora and Olorgesailie basins indicate similar trends and a dominant climate control on vegetation and habitats. Large lakes characterised all three basins at 740–528 ka with climate subsequently becoming drier, but with many wetter intervals. At various times the lakes expanded, contracted and dried out, except at Lake Magadi where spring inflows maintained lacustrine conditions through the late Quaternary. Faulting also contributed to fragmentation of the landscape and formation of a mosaic of habitats. An especially intense period of aridity at ~528–392 ka coincided with extinction of many large-bodied mammals and may have helped to drive a change from the use of Acheulean hand axes to the production of Middle Stone Age tools by 320 ka. After 200 ka pollen diversity increased substantially with a mix of montane, riparian and dry forest associations that were present in varying amounts through to ~4.2 ka at the core top.

Keywords: Lake Magadi, macrochacoal, mosaic, olorgesailie basin, pollen, quaternary

Modelling Trends and Variation in Rainfall, Temperature, NDVI, SOI And DMI In The Greater Mara-Serengeti Ecosystem: Implications For Biodiversity Dynamics And Conservation

Joseph O. Ogutu¹, Gundula S. Bartzke, Sabyasachi Mukhopadhyay, Jully S. Senteu, Holly T. Dublin, Hans-Peter Piepho ¹University of Hohenheim, Institute of Crop Science, Biostatistics Unit (340C), Fruwirthstrasse 23, 70599 Stuttgart Germany Corresponding author email address: <u>jogutu2007@gmail.com</u>

Abstract

Understanding regional manifestations of global climate change and their consequences for biodiversity conservation and dynamics is important, particularly for biodiversity-rich systems such as the East Africa's Greater Mara-Serengeti Ecosystem. Global climate change in the southern hemisphere is partially manifested through trends and variations in the hemispheric El Niño-Southern Oscillation (SOI), the regional Indian Ocean Dipole Mode (DMI), and in changes in rainfall and temperature. While many studies analyze individual climatic components to infer regional impacts of climate change using univariate statistical methods, considering interdependencies and covariation between multiple components requires multivariate models. State-space models, a class of multivariate models, can effectively analyze trends and variations in time series of climatic variables by decomposing them into unobservable additive components like trend, cycles, seasonal patterns, and irregularities. The joint analyses of trends and variations using multivariate state-space models can provide more insightful patterns than univariate models alone. For example, bivariate models can better characterize relationships between weather components, like rainfall and temperature, which may imply different impacts on vegetation and animals when considered independently. Moreover, feedback mechanisms between

temperature, rainfall, and vegetation productivity add complexity to their interrelationships. The presence of seasonal and interannual cycles in rainfall, temperature and vegetation can greatly influence ecosystem dynamics. Wet and dry phases during the climatic year affect plant and animal reproduction, migration patterns, and herbivore mortality, influencing biodiversity dynamics and conservation outcomes. To investigate these patterns in the Greater Mara-Serengeti Ecosystem, we use historic rainfall, temperature, and vegetation data to build state-space models. These models aim to identify trends and oscillations in weather and vegetation components and explore potential modulating influences of oceanic and atmospheric oscillations, such as the Indian Ocean Dipole Mode Index (DMI) and the Southern Oscillation Index (SOI), on regional rainfall and temperature trends. By employing both univariate and multivariate state-space models, we aim to uncover individual and joint trends and variations in climatic and vegetation components, ultimately providing valuable insights into the implications for biodiversity dynamics and conservation in the region. Understanding these patterns is crucial for formulating effective strategies to address the impacts of climate change on East African ecosystems and their biodiversity.

Potential impacts of climate change on wildlife protected areas, A case study of Maasai Mara National Game Reserve

Laban K. Rotich

The Technical University of Kenya, P. O. BOX 52428 – 00100, Nairobi, Kenya. Corresponding author email address: <u>lkrotich@tukenya.ac.ke</u> or <u>sirlurburn@gmail.com</u>

Abstract

Climate change via erratic rainfall and temperature is increasingly recognized as one of the most substantial factors affecting wildlife population in protected areas. Based on systems theory, this study investigated the effects of rainfall and temperature variations on wildlife population dynamics in Maasai Mara National Game Reserve (MMNGR). Rainfall and temperature data was obtained from 15 rain gauges located in MMNGR operated by World Wide Fund and Friends for conservation. Wildlife data was collected from Directorate of Resource Surveys and Remote Sensing (DRSRS). Satellite imagery vegetation data was obtained from Regional Center for Mapping of Resources for Development (RCMRD). The study adopted explanatory research design. Changes in vegetation cover were determined from satellite imagery using normalized difference vegetation index (NDVI) method. The NDVI images from the years 1975 to 2018 were processed to obtain specific NDVI values per land cover category. The mean monthly rainfall and air temperature in MMNGR for the last 54 years were analyzed. Time series was applied to analyze rainfall and temperature data. Findings indicate that rainfall and temperature variations positively contribute to influence the decline in wildlife populations as there could be other factors too. The study findings suggest that high amount of vegetation cover as indicated by NDVI maps prompt high survival rates for wildlife and vice versa. The study proposes that extremely high and low rainfall totals and temperature trends are likely to increase wildlife mortality and consequently decline in wildlife population.

Keywords: Climate change impacts, wildlife population

Vulnerability assessment of *chondrichthyan* species to fisheries in coastal Kenya: implications for conservation and management

Benedict Kiilu¹², Boaz Kaunda-Arara³, Gladys Okemwa⁴, Remmy Oddenyo⁵, Elizabeth Mueni¹, Bernerd Fulanda², Edward Kimani³, Peter Musembi⁵, Lameck Menya³, Grace Nduku¹, Jonathan Musembei¹, Maurine Okeri⁴, Mohamed Omar⁶ and Geoffrey Odhiambo⁷

¹Kenya Fisheries Service, P.O. Box 90423- 80100, Mombasa, Kenya

²Department of Biological Sciences, Pwani University, P.O Box 195-80108, Kilifi Kenya

³Department of Fisheries and Aquatic Sciences, University of Eldoret, P.O. Box 1125, Eldoret, Kenya

⁴Kenya Marine and Fisheries Research Institute, P.O. Box 81651-80100, Mombasa, Kenya

⁵Wildlife Conservation Society, P.O. Box 99470-80107, Mombasa, Kenya

⁶Wildlife Research and Training Institute, P.O. Box 842-20117, Naivasha, Kenya.

⁷CORDIO East Africa, No. 9 Kibaki Flats, Kenyatta Beach, Bamburi, P. O. Box 10135-80101, Mombasa, Kenya

Corresponding author email address: <u>msaid26474@me.com</u>

Abstract

Ecological risk assessment (ERA) of species in fisheries is useful for making informed management decisions especially in data-scarce situations. Knowledge of vulnerability of species to gear-fisheries is important for targeted management measures especially for elasmobranch species known to have delicate life-history strategies. As part of a National Plan of Action for Sharks (NPOA-sharks) Initiative, the Kenya Fisheries Service (KeFS) organized a three-day workshop (during April 2022) involving various experts and stakeholders to analyze relative vulnerability risks of shark and ray species to fishing gears in Kenya's EEZ. The workshop applied a Productivity and Susceptibility Analysis (PSA) approach to estimate relative vulnerability of species to gears based on the values of their productivity and susceptibility attributes. A total of 30 shark and 29 ray species were used for the analysis of relative vulnerability to artisanal gears, prawn trawlers, and the industrial pelagic longline fishery within Kenya's EEZ. Overall, we found high species vulnerability to the prawn trawl fishery (35% for rays and 66% for sharks and shark-like rays) and to the industrial longlines (100% for rays and 46% for sharks and shark-like rays). There were variable but lower vulnerability ranges for species in the artisanal gears. About Thirty species are assessed to have High Relative Vulnerabilities to the gears and form a High Vulnerability Species Assemblage (HVSA) that will require more targeted management strategies applied through a hierarchical. Of the HVSA group, five species (Sphryna lewini, Pseudoginglymostoma brevicaudatum, Rhina ancyclostoma, Rhynchobatus djiddensis, Rhynchobatus laevi) are Critically Endangered (CR), while another five (Carcharhinus plumbeus, Mobula birostris, Mobula eregoodoo, Stegostoma tigrinum, Rhinoptera jayakari) are Endangered (EN) with Extinction as per the IUCN Red List assessment (www.iucnredlist.org, release 2022-1). The results, indicate a lower fishing pressure threshold is required to predispose the prawn trawl bycatch species to High Vulnerability on the Kenyan coast. >50% of the species evaluated as being of High Vulnerability are those also Threatened with extinction. The PSA will require continuous updating to include more species and improve on its sensitivity. A Shark and Ray Management Plan (SRMP) that takes into account the outputs of the PSA is recommended for the management and conservation of the chondrichthyan stocks within the framework of NPOA-Sharks for Kenya.

Keywords: Productivity, susceptibility, overfishing, conservation, policy, management

Abstracts

DAY **03**

Thursday 28th September 2023

Sub-theme: Addressing Wildlife Health Challenges through One Health Approach

Recurrent Anthrax Outbreaks in Humans Livestock and Wildlife in the Same Locality, Kenya 2014-2017

Mathew Muturi¹, John Gachohi², Athman Mwatondo¹, Isaac Lekolool³, Francis Gakuya⁴, Alice Bett⁴, Eric Osoro², Austine Bitek⁵, Mwangi Thumbi², Peninah Munyua⁶, Harry Oyas⁷, Obadiah N. Njagi⁷, Bernard Bett⁸ and M.Kariuki Njenga² ¹Kenya Zoonotic Disease Unit, Nairobi, Kenya ²Washington State University Global Health Program-Kenya, Washington State University, Pullman, Washington, USA ³Kenya Wildlife Services, Nairobi, Kenya ⁴Wildlife Research and Training Institute, Naivasha, Kenya ⁵Food and Agriculture Organization of the United Nations, Nairobi, Kenya ⁶Division of Global Health Protection, United States Centers for Disease Control and Prevention, Nairobi, Kenya ⁸International Livestock Research Institute, Nairobi, Kenya Corresponding author email address: <u>muturimathew@gmail.com</u>

Abstract

Epidemiologic data indicate a global distribution of anthrax outbreaks associated with particular ecosystems that promote the survival and viability of *Bacillus anthracis* spores. Here, we characterized three anthrax outbreaks involving humans, livestock, and wildlife that occurred in the same locality in Kenya between 2014 and 2017. Clinical and epidemiologic data on the outbreaks were collected using active case finding and human, livestock, and wildlife health records review. Information on the temporal and spatial distribution of prior outbreaks in the area was collected using participatory epidemiology. The 2014-2017 outbreaks in Nakuru West subcounty affected 15 of 71 people who had contact with infected cattle (attack rate = 21.1%), including seven with gastrointestinal, six with cutaneous, and two with oropharyngeal forms of the disease.

Two (13.3%) gastrointestinal human anthrax cases died. No human cases were associated with infected wildlife. Of the 54 cattle owned in 11 households affected, 20 died (attack rate = 37%). The 2015 outbreak resulted in the death of 10.5% of the affected herbivorous wildlife at Lake Nakuru National Park, including 745 of 4,500 African buffaloes (species-specific mortality rate = 17%) and three of 18 endangered white rhinos (species-specific mortality rate = 16%). The species mortality rate ranged from 1% to 5% for the other affected wildlife species. Participatory epidemiology identified prior outbreaks between 1973 and 2011 in the same area. The frequency and severity of outbreaks in this area suggest that it is an anthrax hotspot ideal for investigating risk factors associated with the long-term survival of anthrax spores and outbreak occurrence.

Evaluating temporal patterns of anthrax outbreaks in Kemyam wildlife and the control measures instituted to control and prevent anthrax events in the country

Francis Gakuya¹, Isaac Lekolool², Mathew Muturi³ and David Ndeereh¹ ¹Department of Veterinary Science and Laboratories, Wildlife Research and Training Institute Naivasha, Kenya.

²Department of Veterinary and Capture Services, Kenya Wildlife Service, Nairobi, Kenya. ³Directorate of Veterinary Services, Kabete, Nairobi, Kenya.

Corresponding author email address: fgakuya@wrti.go.ke or francisgakuya10@gmail.com

Abstract

Anthrax, a bacterial zoonosis of global health security and public health importance, is primarily a disease of domestic and wild herbivores transmitted through ingestion of Bacillus anthracis spores from soil and/or vegetation. The disease can cause large-scale loss of wildlife and domestic animals and is a major threat to the conservation of endangered wildlife species. We investigated the frequency of outbreaks and control measures put in place by reviewing records of anthrax cases and outbreaks in wildlife in Kenya from 2000 to 2022 from veterinary services database at the Kenya Wildlife Service. Although isolated wildlife anthrax cases have been reported over time in Kenya, an increased frequency of outbreaks has been observed from 2006 to 2022, occurring every three to five years and affecting different species in different geographical areas. Recurrence of an outbreak within the same area was reported in one wildlife protected area but the second outbreak

was less severe causing lower mortality and affecting lesser number of species than the first one. Control measures instituted following outbreaks include early detection through clinical syndrome and laboratory confirmation, intensive carcass mopping-up and disposal, disinfection of carcasses sites and vaccination of endangered species within the outbreak area. From the findings of the study, the recommended method of control is deep burying of carcasses coupled with disinfection of burial and carcass sites with 10% formaldehyde and caustic soda as this proved effective in containing outbreaks and to a large extent preventing recurrence as well as reducing intensity of recurrent outbreaks. We concluded that due to the emerging temporal patterns of anthrax outbreaks, the wildlife management authorities should be alert and vigilant and put up contingency measures for prevention and control.

Keywords: Anthrax, bacillus, control, outbreak, Kenya

Behavior and parasitism in a wild baboon population

Mercy Y. Akinyi^{1,2}, David Jansen³, Bobby Habig³, Laurence Gesquierea³, Maamun Jeneby¹, Nilesh Patel⁴, Jeanne Altmann⁵, Jenny Tungf^{6,7}, Elizabeth A. Archie³ and Susan C. Albertsb^{7,8} ¹Institute of Primate Research, National Museums of Kenya, ²Department of Biology, Duke University, ³Department of Biological Sciences, University of Notre Dame, ⁴Department of Medical Physiology, University of Nairobi, ⁵Department of Ecology and Evolutionary Biology, Princeton University, ⁶Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany, ⁷Department of Evolutionary Anthropology, Duke University, Durham, United States, ⁸Duke University Population Research Institute, Duke University, Durham, United States

Corresponding author email address: akinyimercy@gmail.com

Abstract

Parasites have wide ranging detrimental effects on host health and survival. Host behavior has previously been shown to influence parasite burdens, although the reverse has also been reported. Here we present results from two studies that investigated how behavior influences parasitism in the Amboseli baboon population, which has been the subject of long-term, individual-based monitoring for decades. Data collection included social interactions, blood, and stool samples. In the first study we investigated whether grooming behaviour, which is a major social activity for many non-human primates, confers health benefits linked to reduced tick burdens. We tested the relationship between grooming and tick infestation and found that individuals that receive more grooming have lower tick loads and higher packed cell volume (a general measure of health status) than individuals that receive less grooming. In the second study, we tested how processes operating at multiple scales—from individual hosts to social groups and the population at large—work together to predict patterns of helminth parasitism and their consequences for female fertility. We found that female infection risk was best predicted by factors at the host-, social group-, and population level: females facing the highest risk were old, socially isolated, living in dry conditions, and infected with other helminths. Further, females infected with more diverse parasite communities exhibited longer interbirth intervals than females infected by fewer parasite taxa. In the aggregate, these results provide clues about potential evolutionary costs associated with social behavior.

Keywords: Wild primates, parasites, behavior, disease, Amboseli

Evidence of co-exposure with *Brucella spp*, *Coxiella burnetii*, and Rift Valley fever virus among various species of wildlife in Kenya

Francis Gakuya¹, James Akoko^{2,3}, Lillian Wambua², Richard Nyamota², Bernard Ronoh⁴, Isaac Lekolool⁴, Athman Mwatondo^{2,5,6}, Mathew Muturi^{2,5,7}, Collins Ouma³, Daniel Nthiwa⁸, Earl Middlebrook⁹, Jeanne Fair⁹ John Gachohi^{10,11}, Kariuki Njenga¹⁰, Bernard Bett²

¹Wildlife Research and Training Institute, Naivasha, Kenya;

²International Livestock Research Institute, Nairobi, Kenya;

³Department of Biomedical Science, Maseno University, Kisumu, Kenya;

⁴Kenya Wildlife Service, Nairobi, Kenya;

⁵Zoonotic Disease Unit, Nairobi, Kenya;

⁶Department of Medical Microbiology and Immunology, Faculty of Health, University of Nairobi, Kenya;

⁷Faculty of Veterinary Medicine, Freie Universität Berlin, Germany;

⁸Department of Biological Sciences, University of Embu, Embu, Kenya;

⁹Los Alamos National Laboratory, New Mexico, USA;

¹⁰Washington State University, Global Health Programme, Nairobi, Kenya;

¹¹School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya

Corresponding author: * jamesakoko@yahoo.com

Abstract

Co-infection, especially with pathogens of dissimilar genetic makeup, may result in a more devastating impact on the host. Investigations on co-infection with neglected zoonotic pathogens in wildlife are necessary to inform appropriate prevention and control strategies to reduce disease burden in wildlife and the potential transmission of these pathogens between wildlife, livestock, and humans. This study assessed the co-exposure of various Kenyan wildlife species with Brucella spp, Coxiella burnetii, and Rift Valley fever virus (RVF). A total of 363 sera from 16 different wildlife species, most of them (92.6%) herbivores, were analysed by Enzyme-linked immunosorbent assay (ELISA) for IgG antibodies against Brucella spp, C. burnetii and RVFV. Further, 280 of these were tested by PCR to identify Brucella species. Of the 16 wildlife species tested, 15 (93.8%) were seropositive for at least one of the pathogens. Mean seropositivities were 18.9% (95% CI: 15.0-23.3) for RVFV, 13.7% (95% CI: 10.3-17.7) for Brucella spp and

9.1% (95% CI: 6.3-12.5) for C. burnetii. Buffaloes (n = 269) had higher seropositivity for Brucella spp. (17.1%, 95% CI: 13.0-21.7%) and RVFV (23.4%, 95% CI: 18.6-28.6%), while giraffes (n = 36) had the highest seropositivity for C. burnetii (44.4%, 95% CI: 27.9-61.9%). Importantly, 23 of the 93 (24.7%) animals positive for at least one pathogen were co-exposed, with 25.4% (18/71) of the positive buffaloes positive for brucellosis and RVFV. Based on molecular analysis, Brucella DNA was detected in 46 (19.5%, CI: 14.9-24.7) samples, with 4 (8.6%, 95% CI: 2.2-15.8) identified as B. melitensis. The Fisher's Exact test indicated that seropositivity varied significantly within the different animal families, with Brucella (p = 0.013), C. burnetii (p = <0.001), and RVFV (p = 0.007). Location was also significantly associated (p = <0.001) with Brucella spp. and C. burnetii seropositivities. Of ~20% of Kenyan wildlife that are seropositive for Brucella spp, C. burnetii and RVFV, almost 25% indicate co-infections with the three pathogens, particularly with Brucella spp and RVFV.

Keywords: Co-infections, pathogens, Brucella spp., RVFV, Coxiella burnetti

Conservation of lions in Samburu through improving domestic carnivore welfare

Lenasalia, S^{1*}, Kurere, J.K¹²., Bhalla S¹, Likoniwallah, M³and Chege S.M^{2,4} ¹Ewaso Lions, P.O. Box 14996-00800, Nairobi, Kenya ²VetinWild Consultancy Limited, P.O. Box 4420-00100, Nairobi, Kenya ³Animal Care Centre, P.O Box 17968-00100, Nairobi, Kenya. ⁴San Diego Zoo Wildlife Alliance, 2920 Zoo Drive, San Diego, CA 92101 USA. Corresponding author email address: <u>solomon@ewasolions.org</u>

Abstract

The Samburu community for a long time have lived with their livestock alongside wildlife. With these close interactions, conflict often occurs when wild carnivores attack livestock. To mitigate this conflict, the communities keep dogs to guard their livestock from predation – both whilst herding during the day and watching over villages at night. However, the thriving population of dogs and close interactions with wild carnivores has led to diseases being a conservation threat to wildlife from disease spillovers. These diseases include Rabies and Canine Distemper that are fatal to lions. The Community Animal Health Initiative was started in October 2021 to improve domestic carnivore welfare thus preventing disease in domestic dogs that could spread to wildlife. The partnership programme operates in Westgate Conservancy as a Mobile Veterinary Unit. Its objectives include vaccinations against Rabies and Canine Distemper, availing population control services, treating domestic animals injured by wildlife and education on responsible animal ownership and One Health.

Over 1500 animals have received treatments and over 6000 animal vaccinations completed in Samburu East together with partners. The programme has created an early detection system where any disease outbreak is detected and managed before it spreads to livestock, people and wildlife. One Health is a necessary tool in addressing disease spillovers in community areas where wildlife live with domestic animals.

Keywords: Dogs, Disease spillover, One Health, Wildlife.

Gastrointestinal Nematodes and Physiology at the Livestock-Wildlife Interface in Laikipia, Kenya

Alice Burton^{*1}, Andrew Halls¹, Catherine Walton¹, Katharine Coyte², Kathryn Else³ and Susanne Shultz¹ ¹Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester. ²Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester. ³Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine & Health, University of Manchester. Corresponding author email address: <u>alice.burton@manchester.ac.uk</u>

Abstract

In Laikipia County in Kenya, wildlife and livestock co-exist, sharing space and resources. While this has advantages for communities and conservation compared to exclusionary approaches, it presents challenges for managing animal health, agricultural productivity, and disease transmission. Gastrointestinal parasites are common infections in wildlife and livestock, known to impact body condition, growth rates and mortality, resulting in economic losses and public health concerns. Their physiological impacts on host species, particularly for wildlife, can be difficult to study *in-situ* however, due to a lack of non-invasive tools. This study investigated the burden of gastrointestinal nematodes in co-grazing ungulates, which are ubiquitous parasites transmitted via the faecal-oral

route. Inter-specific transmission is likely, however transmission dynamics and the fitness costs of these parasites, are largely unknown. Faecal samples from 6 wildlife and 5 livestock species were collected across two sites, a private conservancy (Mpala) and a community-owned rangeland (II Motiok). Livestock stocking densities are much higher on II Motiok, resulting in a lower observed density of wildlife on the rangeland. Parasite burdens were estimated using a modified McMaster technique. Burden was predicted by host species, and was higher in wildlife than livestock, but no differences were found between the two properties. Future work will identify differences in nematode species composition using DNA metabarcoding at the ITS-2 region, to identify potential transmission pathways. We have developed novel in-house enzyme immunoassays to measure faecal immune (IgA, IgG) and inflammatory (lactoferrin) biomarkers in bovid and equid species, and will use these assays to measure the physiological responses to infection burdens in our samples. These preliminary findings suggest the potential for wildlife disease reservoirs, but did not indicate that habitat management or intensity of livestockwildlife interactions significantly impacted gastrointestinal nematode burdens. This is important for local stakeholders, and for understanding future conservation challenges in Laikipia.

Keywords: Livestock, Nematode, Parasite, Physiology, Wildlife

Gastrointestinal Parasite Dynamics at the Livestock-Wildlife Interface in Laikipia, Kenya

Andrew Halls¹, Alice Burton¹, Catherine Walton¹, Kathryn Else² and Susanne Shultz¹ ¹Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester. ²Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine & Health, University of Manchester. Corresponding author email address: <u>andrew.halls@student.manchester.ac.uk</u>

Abstract

Laikipia County in Kenya, is home to many wildlife and livestock species that co-exist in the same areas. While this has several benefits, it also presents challenges such as the transfer of disease. Gastrointestinal parasites are common infections in wildlife and livestock. This study identified the prevalence of two groups of parasites: *Giardia spp.* and *Cryptosporidium spp.* These are both ubiquitous parasites, transmitted via faecaloral and waterborne routes. In mixed landscapes interspecies transmission is likely, however the dynamics are largely unknown. 182 faecal samples from 6 wildlife and 5 livestock species were collected across two sites, a private conservancy (Mpala) and a community-owned rangeland (Il Motiok). Wildlife densities are lower on Il Motiok, due to overgrazing of livestock whilst Mpala has much higher levels of interspecies interaction. Protozoa prevalence was determined using PCR screening, and multilocus sequencing was used to identify species. *Giardia spp.* prevalence was 45% in wildlife and 28% in livestock. Most infections were *G. duodenalis* assemblage A followed by assemblage B. These are both zoonotic generalists. One assemblage E was found in cattle. *Cryptosporidium* was not identified in this initial sampling. These findings suggest the potential for cross-species transmission and for wildlife disease reservoirs due to the high prevalence of the same pathogens across a variety of wildlife and livestock species. This is significant for local stakeholders, and for comprehending future conservation and health challenges in Laikipia.

Keywords: Cryptosporidium, Giardia, Laikipia, Livestock, Wildlife

Non-invasive assessment of ovarian activity in free-ranging eastern black rhinoceros (*Dceros bicornis michaeli*) in Kenya

Maureen W Kamau1⁴, Janine L Brown², Nicole Boisseau², Jamie Gaymer³, James Hassell¹, Dino J Martins⁴ and Suzan Murray¹ ¹Global Health Program, Smithsonian National Zoo Conservation Biology Institute, Washington DC 20008, USA ²Center for Species Survival, Smithsonian National Zoo Conservation Biology Institute, Front Royal, VA 22630, USA ³Ol Jogi Wildlife Conservancy, P.O Box 259-10400, Nanyuki, Kenya ⁴Mpala Research Centre, P.O Box 555-10400, Nanyuki, Kenya Corresponding author email address: KamauM@si.edu

Abstract

Eastern black rhinos (Diceros bicornis michaeli) are a critically endangered species living in diverse habitats across Africa. In Kenya, once threatened with extinction due to massive poaching pressures, increased protection has resulted in losses being less than 1% annually today. Still, some populations have failed to achieve desired population growth targets. At Ol Jogi Wildlife Conservancy, some individuals are experiencing sub-optimal reproduction based on historical calving records and long inter-calving intervals (>3 years). Hormones drive the reproductive process, so non-invasive assessments of endocrine patterns can be useful indicators of individual reproductive health. In this study, we analysed longitudinal fecal progestagen metabolite (fPM) concentrations in all breeding female eastern black rhinos at Ol Jogi (n = 17) and compared the prevalence of irregular estrous cycles (longer or shorter than 20-40 days) and anestrous periods (interluteal period more than twice the length of a normal follicular phase, i.e. > 10 days) between optimal (inter-calving interval < 3 years)

and sub-optimal (>3 years) reproducing individuals. Ten rhinos were pregnant during at least part of the study period. A total of 12 complete cycles were observed in seven females with an average length of 36 ± 3 days and equal numbers of regular and irregular cycles. Single anestrous periods averaging 67 ± 13 days were observed in five females. Surprisingly, a majority of cycles in optimal reproducing individuals were categorized as irregular based on fPM profiles. Overall, results suggest that irregular ovarian activity and isolated bouts of anestrus do not have negative impacts on reproductive performance in this subpopulation at OI Jogi. A high priority is to continue using noninvasive hormone monitoring to evaluate how ecological or other variables influence reproductive success in this and other eastern black rhino subpopulations in Kenya.

Keywords: Eastern black rhinoceros, hormone monitoring, ovarian activity, progestagen metabolites, reproductive performance

Keywords: Eastern black rhinoceros, hormone monitoring, ovarian activity, progestagen metabolites, reproductive performance

Assessment of Heavy Metal Contaminants in Nkenye Stream in Meru South-Kenya

Kithaka Samson Chabari¹ and Lynnette Mwari Kiboro² ¹Chuka University, Department of Environmental Sciences and Natural Resource Management P.O. Box 109-60400, Chuka, Kenya ²Department of Wildlife Management, Wildlife Research and Training Institute, P.O. Box 842-20117 Naivasha, Kenya Corresponding author email address: chabarisam@gmail.com

Abstract

Heavy metals are the metals which have high densities and atomic weights or atomic numbers. Heavy metals contamination can be observed in soil, water (rivers), air (atmosphere), etc. Heavy metal contamination in surface water may pose a health risk and can be very harmful if present in drinking water and in consumed food. Contamination of stream water can be detrimental to hydrophytes, animals as well as human beings. A significant number of serious animal and human health problems have been reported to have occurred among people who depend on contaminated water sources. Nkenye stream which is located in Chuka Tharaka Nithi County is not an exception. Metals that exist in Nkenye stream are colloidal, particulate, and dissolved phases. Nkenye stream is a critical resource for the local inhabitants yet little attention has been accorded. Studies on major rivers such as Tana River have been conducted to determine water flow and volumes. This study therefore made an attempt to analyze water samples drawn from Nkenye stream in order to determine the relationship between water quality and wildlife health. The criteria applied collection of samples at designated locations using ecological survey. Samples were analyzed in Chuka University laboratory. Macrophyte roots were cleaned and dried then powdered and digested using nitric acid. The sediment was dried, ground to

pass a 2 mm non-metal sieve, digested samples were diluted and analyzed using atomic absorption spectrometry model PG990. The concentration of anions was determined by ion chromatography. The analyses was by General linear model (GLM) on Statistical analysis system (SAS) version 9.4 and significance means separated by Least significance difference (LSD) [alpha = 0.05]. Conclussively, Nkenye stream is polluted with iron, copper and lead. The study recommends that Tharaka Nithi county government should provide sustainable waste management disposal systems.

Keywords: Animal health, contaminants, heavy metals, pollutants, water quality,

A One Health approach to engaging communities better in long term African elephants (*Loxodonta africana*) conservation in Sagalla, Kenya

Belinda Omollo, Esther Serem and Lucy King Save the Elephants Corresponding author email address: <u>esther@savetheelephants.org</u>

Abstract

Human wildlife conflict often create negative attitudes and perception towards elephants & conservation players on local communities living with wildlife or near protected areas. Our work highlights the benefits of community engagement and accountability in identification and addressing causes of conflict and discontentment, tackling hidden costs and vulnerabilities that do not factor into human wildlife conflict management strategies, with a One Health approach. By providing timely, relevant and actionable information and services based on community questions and concerns, and mainstreaming conservation actions across all sectors of society we are able to capture attitudes and perceptions on wildlife that can hinder conservation progress. We demonstrate a holistic and comprehensive approach that considers the needs and perspectives of all stakeholders involved, increasing cost effective information sharing forums for cross messaging to address myths and misconceptions, encouraging innovative ideas that both efficiently and humanely mitigate human elephant conflicts and other underlying health problems and behavior change communication to address the major cause of people's opposition to conservation and minimize undue burden on marginalized people. We explain how multidisciplinary approach has brought more people into the conversation to address confounding factors and through coordinated interventions people are open and more willing to listen and learn about conservation priorities once their personal health and wellbeing needs are met.

Keywords: Human-wildlife conflict, community engagement and accountability, One Health, cross messaging, behavior change communication

Southern white rhino gifts to Aitong, Kenya - fly in the ointment?

R. Kock¹, S. Mihok² and F. Gakuya³

¹Formerly Chief Veterinarian KWS (1990-8) / Professor Wildlife Health and Emerging Disease Royal Veterinary College London (2011-2022)/Independent Scholar Kent England.

²Formerly Vector Borne Disease Scientist specialist in tsetse and trypanosomiasis ICIPE Kenya/Independent Scholar Toronto Canada.

³Senior Principal Scientist, Wildlife Research and Training Institute, Naivasha formerly Chief Veterinary Officer, Kenya Wildlife Service, Nairobi Kenya

Corresponding author email address: rkock@rvc.ac.uk

Abstract

Gifts of wildlife from Heads of State to other countries were once common as a part of diplomacy. In this context, whilst celebrating the opening of relations between South Africa and Kenya in the 1990s, 10 southern white rhinoceros Ceratotherium simum simum were gifted. The species is exotic to Kenya, a species out with National species legislation and responsibility therefore left to the private sector and local authorities. The Kenya Wildlife Service (KWS) vets advised against the move, based on risk of novel tsetse-trypansome challenges, which even with the indigenous black rhinoceros, had caused mortalities. Exporting vet's opinion was conflicting and without any firm consensus, the move approved with experts co-opted to address the tsetse risk. Initial fly trapping employed, showing some suppression of flies in the grazing areas. This control was not sustained, despite the benefit, for initial trial introductions, and tragically followed by mortalities of South African rhino. A few

were saved by subsequent removal from the area. This whole unfortunate event was complicated by unclear responsibilities for the animal's health, comprehensive management was not possible, with samples only sporadically collected. What was done, came through collaboration between the KWS veterinary unit and the ICIPE scientists monitoring the translocation release site and where invited for some cases or mortalities. Diagnostics proved severe infection with *Trypanosome brucei*, with variable symptoms from sudden death associated with intestinal atony, to a semi-paralysed animal responsive to treatment for tryps. This paper provides a diagnostic summary, hitherto unpublished due to sensitivities around this event. The material can now be archived as a warning to future movements of this species that are planned or likely in Africa, for conservation or other purposes.

Keywords: Southern white rhinoceros, trypanosomiasis, translocation, tsetse, Trypanosoma brucei

Seroprevalence of *Neospora caninum* in spotted hyena (*Crocuta crocuta*) populations in areas of High and Low Anthropogenic activity in the Maasai Mara National Reserve, Kenya.

Marsden Onsare^{1,2}, Mosoti Mogoa¹, Kay Holekamp^{2,3}, Tequiero Abuom¹ and Zach Laubach²

- ¹University of Nairobi
- ²Mara Hyena Project
- ³Michigan State University
- Corresponding author email address: marsdenonsare@gmail.com

Abstract

Neospora Caninum is a globally distributed intracellular parasite that infects both warm blooded domestic and wild animals. It is one of the causes of abortion in cattle and causes severe pathologies in canids. In domestic animals, the parasite's transmission, distribution, and manifestations are clearly understood, but in the wild, it is uncertain how it affects different sexes and age groups. This is despite the parasite detection in several wildlife species both in Kenya and across the world. There is horizontal and vertical transmission of this parasite making it easier to spill over from domestic to wild animals thus posing a risk to wild canids. This has been precipitated by the high level of anthropogenic disturbance within wildlife conservation sites such as the Mara National Reserve in Kenya. It has been observed that some pastoralist communities graze their livestock in protected areas such as the Maasai Mara National Reserve in Kenya, thus fostering anthropogenic disturbance, increased livestock-large carnivore interactions, and thus a reduction of space for roaming of large carnivores like Crocuta crocuta. : The overall objective of the study was to determine the seroprevalence of Neospora caninum in Crocuta crocuta populations in areas of high and low anthropogenic activity in the Maasai Mara National Reserve. The project characterized the epidemiology of N. caninum infection in Crocuta crocuta populations using long term data from the Mara Hyena project. 196 Crocuta crocuta were sampled from four clans in the Maasai Mara National Reserve. They were tranquilized with telazol then blood sera were collected from their jugular veins. Neospora caninum IgG antibodies were analyzed using IFAT, with infection defined by standard titers (>100). Plasma samples underwent duplicate assays for cortisol and testosterone levels and were compared between infected and non-infected hyenas, stratified by sex and age. The study determined that the overall prevalence of N. caninum infection was 67.1% with populations living next to

high anthropogenic activities showing the highest prevalence rates. The prevalence rate in females (70%) was higher than males (59.6%) but was not statistically significant. Cubs were 50.3 times more likely to test positive for neosporosis compared to adults. Hyenas with increased seropositivity ratio of toxoplasmosis had increased odds (74.4) of testing positive for neosporosis. There was a significant variation in the level of corticosterone found between N. caninum negative and N. caninum positive hyenas g (98 vs 53; p-value 0.035). Other factors associated with N. caninum infection included relative rank at darting. The findings of the study are essential for the development and implementation of control programs within the wildlife-protected sites in Kenya for the Crocuta crocuta population. Moreover, since the prevalence of infection varies by sex and age categories, these differences will be designed to meet the needs for the effective conservation of this species.

Keywords: Anthropogenic-Activity, Crocuta crocuta- Spotted hyena, Maasai-Mara, Neospora caninum, Seroprevalence

The physiological condition of orphaned African elephants in the Samburu and Buffalo Springs National Reserves, Kenya

Jenna Parker San Diego Zoo Wildlife Alliance Corresponding author email address j<u>eparker@sdzwa.org</u>

Abstract

Prolonged maternal care is critical for many social mammal species, illustrated by lowered survival of weaned orphans as compared to weaned nonorphans. However, our understanding of the physiological mechanisms leading to lowered survival for these orphans who are no longer dependent on their mother's milk is lacking. Moreover, many long-lived species for which prolonged maternal care is fundamental are also of conservation concern, yet orphan deaths are rarely considered in models of population growth. We compared the physiological condition of surviving orphaned and nonorphaned African elephants (*Loxodonta africana*), an endangered species with a high degree of maternal care, in a population of Samburu, Kenya, that has been monitored since 1998 such that each individual is known. The physiological metrics we compared include strongylid (parasitic worm) loads as approximated

by fecal egg counts, average baseline glucocorticoid levels as approximated by fecal glucocorticoid concentrations, and growth as approximated by heights calculated with a range finder. Further, we applied a robust quantitative approach to empirically assess whether orphan deaths measurably affect population growth. Results with respect to strongylids and glucocorticoids were nuanced, with orphans who had left their family showing differences to orphans who were still with their family and nonorphans. Orphans were shorter than nonorphans for their age, and critically, we found that lowered survival of African elephant orphans has a large negative correlation with population growth. This suggests that the total impact of adult female deaths on elephant populations and populations of other social mammals species has not been realized.

Keywords: Conservation, elephant, orphan, physiology, poaching

Variability in water quality parameters within Kenyan Rhino areas and potential toxicity from water uptake

Fred Omengo^{1*}, Dominic Muringa², Samuel Mutisya³, Mathew Mutinda⁴, Linus Kariuki⁴, Frederick Lala¹ & Bradley Cain⁵ ¹Wildlife Research and Training Institute, P.O. Box 842-20117, Naivasha, Kenya.

²Lewa Wildlife Conservancy

³Olpejeta Conservancy

⁴Kenya Wildlife Service

⁵Manchester Metropolitan University

Corresponding author email address: fomengo@wrti.go.ke

Abstract

Assessing water sources, quantity, quality, and seasonal variations within Black Rhino Conservation areas helps evaluate the site's suitability for sustaining rhinos in the long-term. Such routine analysis also assists managers to compare standards within their conservancies and mitigate against water stress and other potential ecological stress factors that may be associated with water. Water is the most important nutrient in animal feeding and animal health in general and water quality is an issue receiving widespread attention. High quality water could potentially reduce performance and overall productivity of Black rhinos with Rhinos becoming more apparent with exposure to increase in concentrations that stress the kidney.

When establishing new Rhino areas, a comprehensive multidimensional approach has been embraced in Kenya that considers a wide range of ecological factors with an influence on the carrying capacity. The current practice is that there is consideration for vegetation composition, water resources, soil quality, and veterinary considerations among other factors. This paper compares the major physical chemical parameters from natural water sources in 10 Rhino areas namely; Lake Nakuru national Park, Nairobi National Park, Solio Ranch, Lewa Borana,

Keywords: Black rhinos, water quality, salinity

Ruma National Park, Chyulu Hills National Park, Meru National Park, Olpejeta Conservancy, Tsavo NP EPZ zone and the SERA Community conservancy. For majority of the sites, data for a full chemical analysis exists and we are able to compare these data from Total Dissolved Solids, Major Elements and some heavy metal concentrations. Results indicate high variations in the various water sources within these sanctuaries confirm the relative tolerance of Black Rhinos to varying salinity levels. (TDS mgl⁻¹, n=41, max=984, min=24, SD=216; pH n=48, max= 9, min=6.4, SD= 0.8; Na⁺ mgl⁻¹, max=189, min=3.5, SD=43.) In majority of Rhino areas in Kenya, Salinity has previously been flagged out as a major potential mortality threat, however, important to note that wildlife is able to adapt to saline water but abrupt changes from low to high saline can be harmful. The salinity of drinking water affects productivity, performance, feed conversion ratio water metabolism distribution of body fluids, kidney function and blood constituents of animals. Although wildlife is able to adapt to saline water, we recommend that analysis of water at source and release sites should be undertaken to reduce the potentially fatal effects of abrupt changes from low to high salinity Levels.

Using a One Health approach to address wildlife disease challenge.

Marilyn Karani Gilead Oneglobalhealth Consultants ltd. Corresponding author email address: <u>mrm.karani@gmail.com</u>

Abstract

Wildlife health is defined as the ability or the capacity to realise full function, satisfy daily needs and adopt or cope with changing environments. Wittrock and Stephen of the University of Saskatchewan and Duncan of the Colorado state University classified the determinants of wildlife health into six themes; "the biological endowment of the individual and population, the animal's social environment, the quality and abundance of the of the animals' needs for daily living, the abiotic environment in which the animal lives, sources of direct mortality and the changing human expectations". These themes translated into their functional attributes bring into focus issues such as habitat availability and quality, competition, prey availability, escapement, parasites, and diseases. These factors play an important role in wildlife health planning. According to the World Organization for Animal health and the World Health Organization, the health of humans, domestic and wild animals, plants, and the wider environment (including ecosystems) are closely linked and interdependent. Many studies reveal the presence of

Reverse Zoonosis (Zooanthroponoses) for example the case of methicillin-resistant staphylococcus aureus. Strategies for the prevention of antroponoses and zooanthroponoses through minimising Human-wildlife interphase erosion, elimination of transmission points, to regulate and monitor wildlife trade and wildlife animals and products markets, will have a positive impact on wildlife health. Implementation and monitoring of Policies that address the negative impacts on the determinants of wildlife health including, enhancing the collaboration and coordination of different stakeholders to ensure conservation of wildlife natural habitats, ensure food production systems change to safeguard wildlife habitats, elevation of emerging infectious disease pandemic prevention and wildlife disease prevention and control programmes is key. This paper will link the impact of human, Animal and Environmental health (biotic and abiotic environment) on the determinants of wildlife health and subsequently to wildlife health.

Keywords: Determinants of wildlife health, functional attributes of the determinants of wildlife health, One Health, wildlife health, zooantroponosis

Sub-theme: Use Of New Technology in Addressing Wildlife Conservation Challenges

Compatibility of livestock and wildlife in human-occupied rangelands: Using traditional pastoralism to enhance conservation of lions and their wild prey in Laikipia, Kenya

Annabella Helman¹, Benard Gituku² and Jacob R. Goheen¹ ¹University of Wyoming, USA ²Ol Pejeta Conservancy, Laikipia, Kenya Corresponding author email address: <u>ahelman@uwyo.edu</u>

Abstract

Large carnivores come into conflict with pastoralists, thereby compromising livelihoods dependent on livestock production. Lions (Panthera leo) have returned to the Laikipia Plateau in central Kenya after decades of lethal control, and their restoration has been fueled by an abundant population of their primary prey, plains zebra (Equus guagga). Zebra aggregate around glades—lush grazing lawns derived from manure from cattle corrals. As a result, lions focus their hunting activity in and around glades, thereby increasing predation risk for various species of antelope that occur in proximity to zebra (and thus glades). In particular, an endangered antelope–Jackson's hartebeest (Alcelaphus buselaphus jacksoni)—is declining due to this dynamic of "apparent competition", in which lion prey preferences are disproportionately reducing hartebeest survival relative to that of zebra. Strategically placing corrals >0.5 km from hartebeest territories could provide spatial

separation between hartebeest and zebra, thereby enticing lions to hunt (and thus kill) zebra far away from hartebeest. I propose to remotely quantify zebra aggregation behavior around glades of different age classes via camera trap imagery. I will couple these methods with kill-site "clusters" (derived from GPS-telemetered lions) and hartebeest vital rates (derived from sight-resight methods of individual hartebeest). My analyses will enhance our understanding of the spatial and temporal scales over which glades attract zebra, and how proactive cattle production may be used as a tool to conserve lions and their wild prey all while minimizing conflict with pastoralism. This project is therefore likely to result in a rare win-win in wildlife conservation: hartebeest are conserved without resorting to lethal control of lions, through active collaborations with pastoralists.

Keywords: Apparent competition, wildlife-livestock interactions, conservation, ecosystem dynamics, human-wildlife coexistence

Combining technologies to examine human-lion interactions across scales for improved coexistence

Lucrecia K. Aguilar^{1,2} and Andrew B. Davies¹

¹Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA 2 ²Mpala Research Centre, Nanyuki, Laikipia, Kenya

Corresponding author email address: laguilar@g.harvard.edu

Abstract

As worsening environmental crises harm humans and nonhumans alike, the need for improved human-wildlife interactions is increasingly dire. Multispecies coexistence is especially critical for the predator guild, wherein threatened carnivores and humans often come into conflict over shared resources. Technology provides important tools for mitigating these conflicts, though greater integration of technologies across scales of space, time, and biological organization can advance our understanding of coexistence dynamics. Here we demonstrate how an interdisciplinary combination of technologies enables us to examine novel dimensions of interactions among people, livestock, and lions (Panthera leo) to promote sustainable coexistence in Laikipia, Kenya. In collaboration with local communities, conservancies, and organizations, we study human-lion interactions from individual to landscape scales using four main categories of state-of-the-art technology: 1) biologging, 2) remote sensing, 3) eDNA, 4) mobile apps and computer software. By combining biologging tools used in animal movement ecology (e.g., species

movement, acceleration, & radio tracking [SMART] collars) and human mobility science (e.g., smart phones and watches), we can collect high-resolution, spatiotemporally-aligned data for interacting lion, livestock, and human individuals. Drone-based remote sensing surveys using an integrated Light Detection and Ranging (LiDAR), red-greenblue (RGB), and thermal sensor package enable us to create extremely detailed maps of landscape features in three dimensions. Using in-country molecular technologies, we compare DNA from lion scat samples collected from the field and at collaring events to assess wild vs. domestic prey in the diets of different lion individuals. Software utilized on portable electronic devices facilitates all field-, lab-, and computer-based data collection and analyses. Overall, this integration of diverse technologies across scales will not only advance scientific knowledge of human-carnivore interactions, but also inform conservation management for enhanced human, wildlife, and ecosystem wellbeing. Keywords Carnivore ecology; Conservation technology; Human-wildlife coexistence; Lion; Socioecological systems

Keywords: Bushmeat, conservation, forensic, trade, biodiversity, poaching

Flooding of Lake Nakuru National Park in Kenya and its effects on the resident wildlife.

Peter O. Hongo¹ and Galcano C. Mulaku²

¹Department of Wildlife Information Centre and Information Management, Wildlife Research and Training Institute, Naivasha, Kenya.

²Department of Geospatial and Space Technology, University of Nairobi, Nairobi, Kenya.

Correspondence author email address: peterhongo@gmail.com

Abstract

Lake Nakuru is one of Kenya's Rift Valley Lakes and lies within the Lake Nakuru National Park. As a key habitat for both Phoenicopterus roseus and Phoenicopterus minor and other water birds, the lake is a major tourist attraction. Lake Nakuru National Park covers an area of approximately 188 km2 and is fully enclosed with a perimeter fence. The park is home to about 56 different species of mammals, 550 plant species, and 450 species of terrestrial birds as well as flamingos and other water birds. In the last decade, the lake has experienced continuous flooding, increasing the lake area from 35 km2 in 2009 to 54 km2 in 2018. This impacted negatively on the available space for wildlife. The main objective of this study was to investigate the effects of this flooding on the wildlife and their habitats in Lake Nakuru National Park. The methodology used Land use Land cover (LULC) interpretation of Landsat Satellite imagery from two epochs, 2009 and 2018, and integration of the results with relevant wildlife data provided by Kenya Wildlife Service. The results, which include LULC change maps and wildlife

distribution maps, have shown that the flooding impacted negatively on the available space for wildlife. In addition, the floods also compromised key park infrastructure such as roads and the main gate making it very difficult to maintain the normal park operations, and hence adversely affecting the local and national economies. The information provided by this study is useful for planning mitigation measures in respect of the current and potential future flooding.

Keywords: Change detection, Flooding, Lake Nakuru, Land cover, Land use

Hippopotamus suitable habitat analyze in the Pendjari biosphere reserve using remote sensing and GIS tools

G.R.M. Adounke¹, C.A.M.S. Djagoun¹, G.N. Kpéra^{1,2}, B.D. Kassa¹, Lippai C.³

¹Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01 BP 526 LEA-FSA, Cotonou, Benin

²National Institute of Agricultural Research of Benin (INRAB), 01 BP2359, Cotonou, Benin

³PO Box 630, Betty's Bay, Western Cape 7141, South Africa

Corresponding author email address: gadounke@gmail.com

Abstract

Common hippopotamus is less widely distributed and typically occurs at low densities in West Africa. Although founding in many West African nations, overall population sizes tend to be much smaller, either because of less available habitat or the higher density of human populations. Thus, habitat loss and conflict with agricultural development and farming are a major problem for the species conservation in many countries as in Benin country. Our project aims to carryout habitat suitability analysis of hippopotamus in the Pendjari Biosphere Reserve Mixed approaches based on remote sensing and GIS were employed to map the suitable habitat sites of hippopotamus in the Pendjari Biosphere Reserve. The major Software that was used is: ENVI 4.7 to classify land use/land cover and ArcGIS 10.4.1 to produce thematic maps based on their particular criteria. Data indicated that, the hippopotamus suitable habitat including grass, shrub and wood savannah, represent 91,90% (4640,99km2) of the overall land cover against only 8,1% as unsuitable habitat. In the area of high competition with others herbivorous, the grass productivity of the suitable habitat need to be assessed in order to determine the capacity of charge of the Reserve.

Keywords: Hippopotamus benefit, suitable habitat, Positive perception, grassland, Savannah

Impacts of the Loisaba Conservancy rhino fence on the behavior of other wildlife species

Rita Orahle1, Jenna Stacy-Dawes2, Shifra Z. Goldenberg2, Lexson Larpei1, Laiyon Lenguya1 Nicholas W. Pilford2, Michael Mugo1, Tom Silvester2 and Daniel Yiankere1

1Loisaba Conservancy, Nanyuki, Kenya

2San Diego Zoo Wildlife Alliance, Escondido, CA, USA

Corresponding author email address: rhinos@loisaba.com

Abstract

Fences around rhino conservation areas are a necessary feature in Kenya's rhino meta-population management because of the high illicit demand for rhino horn on the international black market. However, fences have known detrimental impacts on other species, for example, entanglement, limits to dispersal and resource acquisition, and increased vulnerability to predation. Yet, little information is available on the ways in which wildlife adapt to new fencing. Using camera traps, fence flags, and fence attendants, we determined how wildlife adapted to corridor usage and how fence flagging affected wildlife fence breakages. We report on the behaviors observed, including fence crossings, vigilance, direction reversals, and fence breakages, and how these patterns varied by species. We present our findings in the context of the habituation process that occurs among wildlife species encountering the fence. Preliminary results indicate that wildlife are getting used to the corridors and fence, but flagging is not effective in deterring wildlife from breaking the fence since most breakages occurred on flagged sections of the fence. These findings will be valuable for those managing fenced landscapes for multiple species.

Keywords: Bushmeat, conservation, forensic, trade, biodiversity, poaching

Enhancing mapping of illegal wildlife trade hotspots in Kenya: Integrating market survey and confiscated wildlife meat analysis

Moses Y. Otiende^{1*}, Arthur B. Muneza², Antoinette A. Miyunga¹, Winfridah Onyari¹, Julian Fennessy³, Patrick Omondi¹, Linus Kariuki⁴, James Hassell⁵ and Joel W. Ochieng⁶

¹Forensic & Genetics Laboratory, Wildlife Research and Training Institute, P.O. Box 842 – 20117 Naivasha, Kenya

²Giraffe Conservation Foundation, P.O. Box 86099 Eros, Namibia

³School of Biology and Environmental Science, University of Dublin, Dublin, Ireland

⁴Kenya Wildlife Service, P.O. Box 40241–00100 Nairobi, Kenya

⁵Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC 20008, USA

⁶Agricultural Biotechnology & Wildlife Programme, University of Nairobi, P.O. Box 29053 – 00625 Nairobi, Kenya.

Corresponding author email address: motiende@wrti.go.ke

Abstract

Illegal wildlife trade is a severe threat to survival of wildlife populations and has been linked to documented declines of some species. Poachers and illegal wildlife traders often mask meat as livestock meat to sell to consumers. However, new technology can accurately identify the species source of meat sold in markets. In this study, we combined market survey sampling and analysis of specimens obtained through enforcement confiscations in Kenya to test the fidelity of market surveys in jurisdictions where wildlife meat consumption is illegal. Random meat sampling and molecular analysis are routinely used in detecting wildlife meat and identifying poaching hotspots. As such, we sought to map wildlife poaching hotspots to guide conservation management market surveys within five Kenyan conservation areas and analysis of confiscated wildlife meat samples. The market survey samples were sequenced using standard mammalian barcode primers used for confiscated samples for species identification. Wildlife meat samples confiscated over a seven-year period were also analyzed to assess temporal trends. Out of the 241 market survey meat samples collected over a two-year period (2020-2021), 13 tested positive and corresponded to five species. Over the same period, 112 out of 116 confiscated samples belonging to 48 wildlife species tested positive. At least 48 wildlife species were identified from a total of 568 wildlife samples that were confiscated during the 2015-2021 period, with 2021 recording the highest incidences. Overall, the market survey underestimated presence of wildlife products but competitively unmasked poaching hotspots. The combined dataset identified Amboseli (Kajiado) and Nakuru-Naivasha highway (Naivasha) as illegal wildlife trade hotspots, with the Masai giraffe being the most targeted species. We discuss the implications of our findings in the context of conservation through the lens of changing socioeconomic factors and potential public health impacts to highlight importance of enforcement and continued monitoring.

Keywords: Bushmeat, conservation, forensic, trade, biodiversity, poaching

Introducing a new HEC Toolbox and Trainer of Trainers Workshops to enhance human-elephant co-existence.

Lucy King, Ewan Brennan and Meha Kumar Save the Elephants Corresponding author email address: <u>lucy@savetheelephants.org</u>

Abstract

Save the Elephants' (STE's) Human-Elephant Co-Existence Program has been testing a Toolbox Manual of tried and tested mitigation methods gathered from across countries to increase tolerance between farming communities and elephants in Kenya using science-based approaches to reduce the socioeconomic impact of living with crop-raiding elephants. The project will share insights into a new Human-Elephant Co-Existence (HEC) Toolbox Manual (freely available) while sharing case studies of implementation success and including a new Trainer of Trainers program initiated by Save the Elephants in 2023. Examples of some of the 80+ tools being taught in the ToT program include novel farm boundaries, water point and tree protection, non-palatable crops, elephant-aware behaviour and alternative income-generating projects. We illustrate how offering project officers and communities with sufficient training in a tested set of HEC tools is increasing tolerance towards elephants, which in turn, is reducing the need for permanent fencing solutions.

Keywords: Human-Elephant Co-existence Program (HEC), Toolbox Manual, Mitigation methods, Crop-raiding elephants, Trainer of Trainers program.

Keeping Watch on Olgulului Ololarashi Group Ranch

Wycliffe Mutero¹, Evan Mwavua Mkala¹, Maurice Unyino Nyaligu¹, Patrick Papatiti², Patrick Sayialel², Evans Olais², Jack Sitonik², Wilson Kosianka² and Stephen Karanja³

¹International Fund for Animal Welfare (ifaw)

²Olgulului Community Wildlife Rangers

³Consultant

Corresponding author email address: wmutero@ifaw.org

Abstract

About 90% of Amboseli National Park (ANP) is surrounded by Olgulului Ololarashi Group Ranch (OOGR). This ranch acts as a wildlife dispersal area to ANP and hence is of great importance. There is need to monitor what happens in OOGR since this has a direct bearing in most cases on the park itself. The monitoring of OOGR is in the main undertaken by the Olgulului Community Wildlife Rangers (OCWR) with support from the international fund for animal welfare (ifaw) and the Kenya Wildlife Service (KWS). Now, effective monitoring requires among others a good information system that enables one to gather data, process it and then display it in simple and easily understood formats. Further, the system should enable one to store data securely. Having observed that OOGR did not have a good information system, ifaw teamed up with OCWR and started developing an online near-real-time OCWR information system in July 2021. The system comprises two customized mobile apps and the ArcGIS Enterprise platform. The mobile apps are used to collect data on wildlife sightings, human wildlife conflict, poaching, wildlife mortalities and ranger patrol movements. The data collected are then uploaded onto an ArcGIS Enterprise platform and from where they are processed. The processed data are output via dashboards. The information from these dashboards has increased the effectiveness of OCWR in the conservation and management of OOGR. The information has also increased OCWR's potential to enhance the conservation and management of ANP and beyond.

Keywords: Amboseli National Park, ArcGIS Enterprise, ArcGIS Survey 123, Dashboards, Olgulului Ololarashi Group Ranch.

Leveraging AI and satellite to push the boundary of wildlife survey technologies

Zijing Wu¹, Isla Duporge², Lacey Hughey³, Jared Stabach³, Andrew Skidmore¹ Richard Lamprey¹, Shadrack Ngene⁴ and Tiejun Wang^{1*} ¹ITC, University of Twente, the Netherlands ²Princeton University, USA ³Smithsonian National Zoo and Conservation Biology Institute, USA ⁴Wildlife Research and Training Institute, Kenya Corresponding author email address: <u>t.wang@utwente.nl</u>

Abstract

New satellite remote sensing and machine learning techniques offer untapped possibilities to monitor global biodiversity with unprecedented speed and precision. These efficiencies promise to reveal novel ecological insights at spatial scales which are germane to the management of populations and entire ecosystems. Here, we present a robust transferable deep learning pipeline to automatically locate and count large herds of migratory ungulates (wildebeest and zebra) in the Mara-Serengeti ecosystem using fine-resolution (38-50 cm) satellite imagery. Our results achieve accurate detection of nearly 500,000 individuals across thousands of square kilometres and multiple habitat types, with an overall F1-score of 84.75% (Precision: 87.85%, Recall: 81.86%). Our research demonstrates the capability of satellite remote sensing and machine learning techniques to automatically and accurately count very large populations of terrestrial mammals across a highly heterogeneous landscape. Our approach holds extreme promise for scaling spatially to produce the first ever total counts of migratory ungulates in open landscapes. In addition to facilitating total counts for multiple species, the ability to observe expansive herds of migratory ungulates from space presents an exciting opportunity for the study of the ecology of animal aggregations from an entirely novel perspective.

Keywords: Artificial intelligence, Deep learning, Mara-Serengeti ecosystem, very high-resolution satellite imagery, Wildebeest migration

Photo Identification as a Tool to Study Chelonia mydas and Eretmochelys imbricata Populations in Kenyan Marine Protected Areas

Joana Hancock¹, Jenni Choma¹, Leah Mainye¹, Jillian Hudgins² and Stephanie Kohnk² ¹Olive Ridley Project Kenya,

²Olive Ridley Project Global, jillian@oliveridleyproject.org

Corresponding author email address: stephanie@oliveridleyproject.org

Abstract

Kenya possesses an extensive coastline that boasts a variety of marine ecosystems, including coral reefs, mangroves, and seagrass lagoons that host rich biodiversity. Beyond these coastal waters are migratory corridors for marine megafauna, including humpback whales, whale sharks, and sea turtles, which are also known to nest on Kenya's beaches. The lack of data on foraging and developmental habitats of sea turtles along the coast and on turtles migrating out of Kenyan waters is scarce, hindering our understanding of the full extent of threats to these populations. A sea turtle photo ID program initiated in July 2018 in the Diani-Chale Marine National Reserve, located on Kenya's south coast, and is managed by the Olive Ridley Project. The program has been used to obtain discrete information about individuals' locations at a given time, which is essential knowledge for spatial planning and conservation management of endangered species, as well as to create

a baseline for juvenile green turtle foraging populations in the south coast of Kenya. In a three-year nine-month period, from July 2018 to March 2022, ORP has recorded 3,369 sea turtle encounters, 2,939 of which were 653 individual green turtles (*Chelonia mydas*), and 430 of which were 87 individual hawksbill turtles (*Eretmochelys imbricata*). Nearly half of the turtles (48%) have been re-sighted, showing strong site fidelity. Data shows the importance of this protected area as a sea turtle foraging aggregations with strong site fidelity. However, the preferences for shallow, nearshore habitats are likely to increase the encounter risk with artisanal fisheries and tourism activities. This pioneer work in Kenya has since expanded to 3 more marine protected areas in Kenya and has become the basis for an in-water sea turtle juvenile population monitoring network.

Keywords: Chelonia, eretmochelys, identification, Kenya, population

Post-release behavior of rehabilitated and released elephant calves in Sera Rhino Sanctuary

Lemerketo Samuel Loidialo¹, Meshack J. Lengees², Samarpelle Samson Learpale³, Loroisho Loldekir³, Giacomo D'Ammando¹ Jenna M. Parker⁴, Shifra Z. Goldenberg⁴

¹ Save the Elephants, Nairobi, Kenya

- ² Reteti Elephant Sanctuary, Namunyak Conservancy, Kenya
- ³ Northern Rangelands Trust, Isiolo, Kenya
- ⁴ San Diego Zoo Wildlife Alliance, Escondido, CA 92027

Corresponding author email address: sgoldenberg@sdzwa.org

Abstract

African savannah elephants are socially complex animals, maintaining many and varied relationships with other members of their species over their lifetimes. Translocated elephants must navigate a new social order and form new relationships following release to a new environment, in addition to learning about the resources they will need to survive. We describe a post-release monitoring program aimed at understanding how calves integrate into a wild resident population of elephants and how social relationships affect exploration of the release site. We rely on GPS tracking collars to monitor the maintenance and establishment of social relationships in elephant calves released from the Reteti Elephant Sanctuary into the Sera Rhino Sanctuary in Sera Conservancy in addition to individual-based monitoring by vehicle. We present results on released calf social association with the resident wild elephant population, the emergence of fission-fusion behavior, and the dependence of rehabilitated calves on their pre-release relationships with other orphaned calves. We also show the use of elephant GPS tracking to understand how they explore a new environment. We found that calves that were better able to integrate with wild resident elephants explored more of the release site. We also found that released calves were very dependent on their

relationships with each other. We discuss the implications of this work for release site selection and

Real-time water quality monitoring using innovative Wireless Sensor Network technology: A pilot study in Lake Nakuru, Kenya

Kipkemboi J.¹ Manene F.², Mugambi A.², Kobia M.², Bett A.³, Rop R.,⁴ Edebe, J.³, Rotich S.⁵, Omengo F.³ & Achiki C.⁶ ¹Kaimosi Friends University,

²Egerton University,

³Wildlife Research and Training Institute,

⁴Kabianga University,

⁵Moi University,

⁶ Kenya Education Network Trust (KENET)

Corresponding author e-mail address: jkkipkemboi@gmail.com

Abstract

Water quality is an important attribute in aquatic ecosystem and hence its monitoring is useful in understanding its ecological dynamics. Over the last decade, the hydrological dynamics in the rift valley lakes including Lake Nakuru have changed significantly. These changes have not only influenced the water balance but also the water quality and by extension the limnological conditions in the lake leading to changes in aquatic flora and fauna. Water quality monitoring is usually necessary to inform such changes and the resultant management interventions. The common approach used for water quality monitoring in Kenya is manual field sample collection and subsequently followed by laboratory analysis. The objective of this project was to set up pilot infrastructure and network support for real-time wireless sensor network (WSN) for water quality monitoring and to develop human and technological capacity for such innovative approach. Considering the lack of internet connectivity and poor GSM network in the lake, LoRaWAN (low-power, wide area networking) protocol built on top of the LoRa radio modulation technique was selected as a means of communication between end-node devices and network gateway. Link profiles and data collection plan was done prior to installation of sensor nodes and gateway. Selected sensors were acquired and custom buoys were designed, fabricated, tested and used for the deployment of sensor nodes at points

of interest in the lake open waters. In this project, libellium waspmote was used to set up nodes in the lake fortransmiting data to a gateway. The sensors currently deployed measures temperature, pH, turbidity and conductivity. The sensor output data is viewed through Thingspeak IOT platform. The MQTT script developed that allowed data transmission protocols from the nodes to the gateway and to the access platform has been successful. Stakeholder sensitization on new approaches for real time water quality monitoring has also been done as part of a continuous process of engagement. Some of the key challenges experienced include the need for regular cleaning and re-calibration of sensors as well as the lake level dynamics. The results of this pilot project show that such low cost infrastructure for real time monitoring is possible as consistent data transmission has been achieved. The study further confirms the potential role of digital technology and internet of things (IoT) in environmental monitoring are workable and can be used to complement conventional approaches. This therefore provide an opportunity for application of the innovative WSN technology for real time environmental monitoring in aquatic ecosystems to generate high frequency and real-time data that can contribute to the management of aquatic ecosystems.

Keywords: Real-time monitoring, water quality, sensors, Internet of T

Status of Animal forensics in Kenya with focus on wildlife

George E. Otianga Owiti Department of Veterinary Anatomy & Physiology, Faculty of Veterinary Medicine University of Nairobi Nairobi, Kenya Corresponding author email address: <u>gowiti@uonbi.ac.ke</u>

Abstract

Forensic science is the solicitation of multidisciplinary science to matters of law. Animal forensics is the convergence of these wide-ranging variety of sciences including veterinary medicine with tenacity to afford riposte(s) to interrogation(s) of concern to a court of law regarding animal crimes of domesticated animals and their derivatives. When it involves wildlife animals, their derivatives and habitat, the term commonly applied is wildlife forensics. Both cases embrace animal-related litigations focusing on the violation of animal/wildlife laws (national, regional and international) amongst other legal disputes surrounding the fauna and faunal environment. This presentation explores the essential issues related to the status of animal forensics in Kenya including animal-related litigations and associated agencies, connotation and the prospective for the future of wildlife forensics in Kenya. Animal forensics in Kenya is increasingly developing, however the veterinary aspect still remains an incipient field apart from

area of animal welfare. Even though, Kenya has good animal welfare legislations coupled with well-organized animal welfare agencies, several factors have resulted in inadequate inclination towards making veterinary forensics a national priority. On the other hand, owing to Kenya's reliance on tourism as a source of national income and international significance of wildlife, wildlife matters (welfare and crime) have received much more attention. Wildlife forensic techniques especially those used to curtail wildlife crimes are handled slightly differently with better enforcement of the legislation. Currently, there is a dearth in pertinent wildlife forensic capacities/establishments; nonetheless, a few analytical techniques and methodologies existing in a few institutions within the Country. With the recent establishment of the National Forensic Laboratory, it is expected that the missing forensic tools and technologies essential for wildlife forensics capabilities are set to improve.

Keywords: Animal forensics, animal litigations, capabilities, forensic techniques, Kenya

Using GPS tracking data to assess elephant (*Loxodonta africana*) movement in relation to risk in Laikipia Samburu Landscape.

Festus Ihwagi¹, Chris Thouless¹, Patrick Omondi², Tiejun Wang³, Iain Douglas-Hamilton¹ ¹Save the Elephants, P.O. Box 54667 Nairobi ²Wildlife Research and Training Institute, P. O. Box 842-20117 Naivasha ³University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands Corresponding author email address: <u>festus@savetheelephants.org</u>

Abstract

Poaching escalated in the years 2009 to 2012 and was the greatest immediate threat to elephants' survival, before subsiding recently. Since elephants are known to respond to anthropogenic risks by alterations in their speed of travel, we quantified this alteration as a ratio of night-time speed to daytime speed (night-day speed ratio) and examined its relationship with poaching levels. Our hypothesis was that poaching is a clear daytime risk, and thus an increase in nighttime movement rates over those seen during the day will support this hypothesis. Using elephant GPS tracking and

mortality data collected in the Laikipia-Samburu ecosystem of northern Kenya between 2002 and 2012, we calculated the mean night-day speed ratio for collared elephants that utilized any of 13 contiguous land units, each under different ownership and management status, and related this ratio to the corresponding poaching levels before and during a poaching surge. Our study showed that elephants moved more at night than during the day where and when risk levels were high. We concluded that the variation in the night-day speed ratio of elephants might be used as an effective indicator for changes in poaching levels on a near real-time basis. We recommend the adoption of the Night Speed Ratio as a complimentary antipoaching tool and an exploration of the same metric against other anthropogenic risks where GPS tracking data is already available. The significant alteration in movement behavior by elephants in response to risk also has potential implications for their foraging strategy, reproduction, and ultimate survival, all of which are not yet fully understood.

Keywords: African elephant, Poaching, Risk, GPS tracking, Night-day speed ratio

No-Take or Regulated-Take? A Study on Coral Reef Conservation in Kenya

Said, Hashim Omar¹, Vanreusel, Ann², Munga, Cosmus Nzaka³, Mohamed, Mohamed Omar Said⁴

¹WWF, Marine and Coastal Landscapes Programme,

²Faculty of Sciences, Department of Biology, Gent University, Marine Biology Group, Krijgslaan 281-S8, 9000 Gent, BELGIUM Email: ann.vanreusel@UGent.ac.be

³Environment and health sciences, Technical University of Mombasa,

⁴Wildlife Research & Training Institute, Coastal & Marine Ecosystem Research Centre, P. O Box 82144 – 80100, Mombasa. Corresponding author email address: <u>msaid@wrti.go.ke</u>

Abstract

Climate change poses a major threat to coral reefs and an effective global action is a prerequisite. While marine protected areas (MPAs) have been adopted to secure coral reef resilience, which management regime is more effective: the no-take (dubbed parks in this study) and the regulated take (dubbed reserves). Kenya, being a global pioneer nation to establish MPAs, the effectiveness of the management regimes is assessed. Three MPAs, under similar management regimes, of different ages, located in different geographic locations and exposed to different conditions: Malindi, Mombasa and Kisite are assessed for the status of the dominant taxa and functional groups of fish, macroinvertebrates and benthic substrate cover. Differences were prominent between management regimes in Malindi, where the park exhibited a coral-algal co-dominance and high fish density, whereas the reserve entailed a turf algaldominated system with low fish density. Mombasa Marine Park and reserve veered more toward patterns observed in Malindi reserve. Kisite park and reserve showed similar patterns between each other, each being hard coral-dominated, with a

similar high fish density to Malindi park. Higher abundance of herbivorous fish corresponded to lower turf algal cover in all cases. Sea urchins (Echinometridae) were more abundant in the reserves - an indicator of overfishing. From the results, it is suspected that wrasses (Labridae) could be the main predators of the Echinometridae as the former was more abundant in the parks. The lower hard coral cover in Mombasa can be justified by the relatively younger age of the MPA. Further, its peri-urban nature predisposes it to pollution from urban sewage and stormwater discharge. For Malindi, fluvial nutrient enrichment is impacting the reserve more than the park. Kisite, however, is positioned in a lower anthropogenic impact area, which could allow it to perform better. There is, however, a need for more assay analyses to identify all herbivore and invertivore species that play a role in controlling algae and sea urchins respectively. Furthermore, efforts need to be put in place to control pollution from affecting the resilience of Mombasa and Malindi MPAs.

Keywords: Marine Protected Area, Marine Park, Marine Reserve, No-take zone, Regulated-Take, resilience, coral reef, herbivory, sea urchins, bioerosion

Sub-theme: Use of Biotechnology and Bio-Prospecting for enhanced Socio-Economic Benefits

A New Gem: Steganotaenia araliacea, a new host plant for edible Bunaea alcinoe larva in Yatta plateau, Machakos, Kenya

Musyoki Alex Mutinda Kenyatta University and National Museums of Kenya Corresponding author email address: <u>alecksers@gmail.com</u>

Abstract

Moths are Lepidopteran, and they occur in hundreds of millions worldwide and in all sizes, colours and shapes. They play various ecosystem services as pollinators, pests, prey, and as hosts of parastoids as well as feed for animals and food for millions of people. More than 2,000 edible insects' species are recorded globally as traditional food sources because of their high proteins, amino acids, vitamins and micronutrients contents. Edible larvae are the most recorded popular edible insects in sub-Saharan Africa. They are big colourful caterpillars with spines on their bodies and feed on specific trees and shrubs as they show high specificity and preference to host plants. Various Saturniidae species have been documented in Africa as both oligophagous and polyphagous feeders. Bunaea alcinoe is one of the recorded edible larvae that is found in various regions of Kenya. B. alcinoe larvae have been documented to feed on Balanites aegyptiaca and Balanites glabra only. B. alcinoe

caterpillars were observed continuously in the month of May and June 2023 feeding on Steganotaenia araliacea in Kikuyuni, Yatta plateau, Machakos until they pupated. A 30 centimeter voucher specimen was cut from the host plant and taken to East Africa Natural History herbarium for identification. The results identified S. araliacea as a new record for B. alcinoe host plants in Kenya and Africa. This study recommends further research on the effect of the different host plants on biology and nutritional value of B. alcinoe larvae in order to foster food and nutrient security and create livelihoods through sale of caterpillars. Finally, this study recommends genetic analysis of the host plants as most host plants show 97-100% similarity in GenBank sequences, and assessment of conservation status of S. araliacea because it has various medicinal uses and the seeds are small and difficult to collect.

Keywords: Bunaea alcinoe, edible larvae, host plants, Steganotaenia araliacea

Bioprospecting for Extremophiles break-down of keratin-laden biomass waste

Francis Mulaa, Wycliffe Wanyoni and John Onyari. University of Nairobi, Kenya.

Corresponding author email address: mulaafj@uonbi.ac.ke or fjmulaa@gmail.com

Abstract

Environmental pollution is a major problem in cities across the world. Feathers are keratin laden fibrous and recalcitrant structural proteins and are the third most abundant polymers in nature after cellulose and chitin. A wide spectrum of animals have developed a diversity of keratins used as structural parts of their outer protection which make up major component of feathers, hair, horns, hooves, cloves, nails etc. They are produced in large amounts as a waste by-product at poultry-processing plants, reaching millions of tons annually throughout the world. Their recalcitrant nature is due to properties such as a high degree of cross-linking by disulphide bonds, hydrogen bonds and hydrophobic interactions. Many Poultry slaughter houses dispose feathers directly into the environment or through open air burning. Sewerage effluent mixed with feathers directly contributes to the blockage of sewerage pipe, increase in air pollution and ultimate increase in environmental pollution. Similar challenges exist for other keratin-containing biomass waste. This project addresses the bioprospecting and application of selected anaerobic extremophilic bacteria which optimized for keratin-laden waste material degradation. This lead to improved control and understanding of the overall keratindegrading process and its improvement and efficiency by using organisms expressing the using novel enzyme cascades of thermophilic keratin degrading enzymes *in vitro* optimized for keratin breakdown in a cost effective and controllable manner. A multidisciplinary team of scientist and industry partners come together to translate the results obtained, including upscaling of the process. The project will contribute to the designing of more sustainable and resilient environmental remediation systems and contribute to the vision of a circular economy by using waste products and converting them to other valuable commercial products.

Keywords: bioremediation; enzymes; extremophiles; feathers, keratin,

Sub-Theme: Use Of Biotechnology And Bioprospecting For Enhanced Socio-Economic Benefit & Emerging Alternative Wildlife Utilization And Enterprises

Effective access and benefit sharing systems key for wildlife conservation and livelihoods improvement.

Mukonyi K.W and Priscilla .M.M

Wildlife Research and Training Institute, P.O BOX 842-20117, Naivasha

Corresponding author email address: kmukonyi@wrti,go,ke or mukonyi2000@yahoo.com

Abstract

Studies reveal an increased trend of wildlife biodiversity loss globally. This has been attributed to increased human populations and demands exerting pressure to habitats in terms of agricultural expansions, industrialization, overexploitation, and pollution. Other factors include impacts of climate change and lack of effective legal framework that attract investments in biodiversity which is not an incentive for sustainable conservation and enhanced livelihoods. Lack of effective access, benefit sharing, and incentive systems been cited as part of key challenges to wildlife biodiversity conservation. Kenya's rich wildlife biodiversity provides various products and services both at international and local markets. It has been stated that optimizing these benefits through an effective ABS system can contribute to wildlife conservation. Therefore, this study focused on the country's gene-trade and bio-trade under the ABS system in line with the international and

domestic obligations. This study is part of the on-going global monitoring of benefits arising from bio-trade and gene-trade under the ABS systems and their contribution to conservation and livelihood under the Convention on Biological Diversity and Nagoya Protocol on access and benefit sharing. The methodology involved desk reviews and field assessment of the identified country's gene -trade and bio-trade ,isolating case studies , review of existing legal frameworks , assessment of benefits and impacts on conservation and livelihoods . Seventy cases of gene-trade were reviewed, 4 cases of biotrade, intellectual property policies from key universities and research institutions were reviewed. The paper gives the status of ABS system in the country in terms of gene-trade and biotrade and impacts on conservation and livelihoods. Findings reveal effective ABS systems may contribute to biodiversity conservation and livelihoods improvement.

Promoting a new species of *Cotesia* as a first biological control agent against the Mediterranean corn borer, an expanding pest

Kaiser-Arnauld Laure1, Calatayud Paul-André¹, Taiadjana Fortuna¹, Mougel Florence¹, Rebaudo François¹, Obonyo Julius², Enock Mwangangi², Josphat Akhobe², Drezen Jean-Michel³ and Thibord Jean-Baptiste⁴

¹EGCE, UPSaclay-CNRS-IRD, France
²*icipe*, Nairobi, Kenya
³IRBI, U.F. Rabelais-CNRS, France
⁴Arvalis, France
Corresponding author email address: <u>paul-andre.calatayud@ird.fr</u>

Abstract

Insect parasitoids play an important role in limiting phytophagous insect populations. Because they often have a narrow host range, many parasitoid species are used for pest insect control. A research program on the diversity of Lepidoptera stemborers and their parasitoids in sub-Saharan Africa has led to the identification of a new parasitoid species, *Cotesia typhae* (Hymenoptera, Braconidae), specialized on the stemborer, *Sesamia nonagrioides*. This stem borer is an important maize pest in France whereas in Kenya is not infesting maize present only on *Cyperus* sp. and *Typha* sp. A Kenyan *C. typhae* strain was found to have high parasitic success on the French *S. nonagrioides* host populations. A French-Kenyan research program is currently investigating the potential of this parasitoid to control the pest *via* yearly releases, while addressing the following aspects: (i) mechanisms of parasitism success and specificity; (ii) risk of establishment in the French environment; (iii) conditions of success in greenhouses; and (iv) mass-rearing techniques. The decision to authorize the use of exotic macroorganisms for crop protection in France depends on the environmental cost benefit balance. We expect the cost to be low considering: (i) the rare presence in non-crop habitats of *C. typhae*; and (ii) the results highlighting a low probability of long-term establishment of this parasitoid in France. In addition, preliminary greenhouse data on parasitism rates and length of efficiency of a single release are encouraging. Upscaling to field conditions will also benefit from experience regarding the marketing of *C. flavipes* to control sugarcane stemborers in Brazil. If successful, biological control with *C. typhae* will illustrate the essential contribution of long-term ecological and biological studies to the setting up of effective sustainable

Keywords: classical biological control, Cotesia typhae, larval parasitoids, maize pest, Sesamia nonagrioides.

The use of cryopreservation in species conservation: Nature's SAFE The Living Biobank

Susan L Walker^{1,2}, Cedric Khayale³, Tullis Matson^{2,4}, Suzannah A Williams^{2,5}, Lucy Morgan^{2,4} and Rhiannon L Bolton² ¹ Chester Zoo, Upton-by-Chester, CH2 1LH, UK

² Nature's SAFE, Whitchurch, SY13 4BP, UK

³ Wildlife Service Training Institute, P.O. Box 842-20117 Naivasha, Kenya

⁴ Stallion AI Services, Whitchurch, SY13 4BP, UK

⁵ University of Oxford, Oxford OX3 9DU, UK.

Corresponding author email address: office@natures-safe.com

Abstract

Human activity has caused the rate of animal extinction to be 100-1000 times above normal, ultimately affecting our own survival. This unprecedented challenge requires ambitious and innovative action: to preserve all animals and their genetic diversity at speed. Nature's SAFE identified that cryopreservation and live biobanking (cryobanking) of tissues/cells from threatened animal species was a viable solution. In an approach analogous to the global seed banks, Nature's SAFE's goal is to preserve global animal genetic diversity at scale. Cryobanking has been long established for many domestic species but is not widely available for endangered animal conservation. To address this, Nature's SAFE connects experts in animal cryobanking with animal conservation programmes, bridging the gap between technology and conservation. Sample and species-specific protocols are used to ensure functionality is retained postthaw. The samples, including gametes, reproductive tissue and somatic tissue, cryopreserved by Nature's SAFE provide a robust living biobank with multiple possibilities to help in future

species restoration through advanced assisted reproductive technologies (aART). Since Nature's SAFE was established in December 2020, samples from 378 individuals representing 173 species totalling 477 samples have been cryopreserved. This includes 9 amphibians, 69 birds, 18 reptiles, 72 mammals, 5 fish and 1 invertebrate species. To capture the widest genetic diversity, Nature's SAFE is focused on supporting live biobanking efforts from endangered species such as the Eastern black rhino (Diceros bicornis), mountain bongo (Tragelaphus eurycerus isaaci), and African elephant (Loxodonta africana) from both from zoo-managed and in-situ populations. Nature's SAFE works in partnership with conservation management plans, which help to determine which species and individuals to prioritise. To maximise conservation impact, Nature's SAFE provides its cryobanking services and expertise for free. Cryobanking is not a complete conservation solution; but a conservation aid ensuring the survival of genetic diversity of future populations as required.

Keywords: Cryopreservation, live biobanking, wildlife, conservation, advanced assisted reproductive technologies (aART)

Community perceptions on the enhancement of avitourism activities in Arabuko Sokoke forest in Kilifi County, Kenya

Koki J. N., Pepela A., Wamukota A. and Mapinga K. Department of Hospitality and Tourism Management, Pwani university Corresponding author email address: <u>kokijairus@gmail.com</u>

Abstract

Avitourism is an inter-connected nature-based tourism activity where its success or failure is determined by community involvement and perceptions. The purpose of this study to evaluate local community perceptions on the enhancement of avitourism within Arabuko Sokoke forest through the adoption of community participation theory and mixed research design. The study targeted 7399 households located in four sub locations where 361 household respondents were sampled by use of stratified and random sampling techniques. The study utilized questionnaire, focus group discussion and observation as data collection methods. The study findings revealed that (63.2%) of the local community were involved in avitourism activities and the activities contribute 43.2% to their household livelihoods. The study findings further revealed that the local community had positive perception on the economic, political and social benefits accruing from avitourism at 74.2%, 69.7% and 66.3% respectively while 63.3% of the local community supported avitourism activities enhancement with 36.7% opposed it. The correlation between community perception and avitourism enhancement was fairly positive (p=0.001) as perception was observed to contribute 29.7% towards avitourism enhancement. The findings further revealed that the local community were highly willing (72.9%) to participate in the enhancement avitourism activities and programs. As Arabuko Sokoke forest exemplify greater potentials for avitourism growth, this study recommends greater avitourism awareness and involvement of the local community to improve positive perception and boost avitourism growth in Arabuko Sokoke forest. This paper agrees with the theme wildlife utilization and enterprises.

Keywords: Avitourism, community, enhancement, involvement and perception

Inventory of wild mushrooms (*basidiomycetes*) from central and Nairobi regions in Kenya

Susan N. Kabacia, Paul Kirika & Victor Otieno Institution Affiliation: National Museums of Kenya Corresponding author email address: <u>susannjuguini@gmail.com</u>

Abstract

The tropical region supports a rich wildlife of plants, animals and fungi. Mushrooms are fruiting bodies of fungi which forms during and immediately after the rainy seasons. They offer ecosystem services such as nutrient cycling for the regeneration of plants, source of nutritious food to man and wild animals and valuable medicine sources. They are also indicators of a healthy forest. However, despite the importance of mushrooms wildlife, inadequate studies have been carried out to document and map the distribution of species in Kenya. Also destructive human activities that have reduced the forest cover below 10% are a major threat to wildlife. The aim of this study was to collect, characterize and map the distribution of mushrooms from different areas in Kenya. The study was carried out in March - June 2021 during the long rainy season. Collection of the samples was carried out in Kiambu environs (Kereita forest, Wangunyu area, Karura forest and Limuru ecosystem), Nairobi environs (Arboretum, City Park, Michuki park), Kajiado

(Ngong hills forest) and Narok (Loita hills forest). Random and opportunistic sampling method was used within the forest, farmlands, grasslands and the species were collected from the soil, dung, litter and humus. In total, 150 samples were collected belonging to 20 families and 35 genera. The family with the highest number of species was Agaricaceae (79) followed by Auriculariaceae (11) and strophariaceae (9). The families with the least samples belonged to Suillaceae (1), Hydnangiaceae (1) and Ganodermataceae (1). Saprophytic fungi were the most abundant (96%) followed by Termite mushrooms (2%), ectomycorrhizal (1%) and parasitic (1%) mushrooms. The study also documented the wild edible mushrooms, Pleurotus, Auricularia, Termitomycetes, some Agaricus species and Macrolepiota species with potential for cultivation and exploitation in the mushroom industry. In conclusion mushrooms wildlife is rich and widely distributed in Kenya under different habitats.

Nature-based tourism in the era of climate change challenges faced by national parks in arid and semi-arid environments

Kaitano Dube,

Ecotourism Management, Faculty of Human Sciences Vaal University of Technology, Andries Potgieter Blvd, Vanderbijlpark, 1911

Corresponding author email address: kaitanod@vut.ac.za

Abstract

Arid and semi-arid environments are areas of extremes even before the advent of anthropogenic climate change. Most believe that plants and animal communities in these areas are well adapted to their existing conditions. This understanding have led to research on climate change not paying attention to these areas. This has resulted in knowledge gaps about these areas' climate and conservation challenges, even though some studies have demonstrated the vulnerability of desert tourism to climate change. This study examines the impact of climate change challenges facing desert and semi-desert national parks in South Africa. Using primary data collected from national park officials through interviews and questionnaire surveys, this study seeks to explore the impacts of climate change and extreme weather events on Kgalagadi National Parks, Ai Ai Richtersveld National Parks, and the rugged Augrabies National Parks. Using a mixed-method approach, the study found that climate change and other human activities are

worsening the impact of climate change on national parks in desert and semi-desert conditions. Challenges observed include increasing fire incidences, prolonged droughts, increasing temperatures, and reduced water flow affecting desert and semi-desert national parks. The climate challenges mentioned above resulted in changes to animal migration, tourism, tourist comfort, dying of some animal and plant species considered critical to these areas. Climate change is also causing increased water shortages in these parks, and calls are being made to assist such national parks in building robust resilience systems and diversifying tourism product offerings to alleviate some of the climate change impacts. The construction of seedbanks of threatened species is a noble response that needs to be backed up with continuous empirical research on the real impacts of climate change on flora and fauna in desert areas. Parks need to relook at the animal stock density of these parks to ensure sustainability.

Keywords: climate change, desert tourism, nature, climate vulnerability, adaptation

Socio-economic benefits and advantages for households living in the "W" Transboundary Biosphere Reserve in Benin (WTBR): Necessity to improve the ecodevelopment contribution of natural resources

Azizou EL-HADJ ISSA 8 BP 0453 Centre de Tri, COTONOU, République du Bénin. Corresponding author email address: <u>az issa@yahoo.fr</u>

Abstract

This study investigated the socio-economic benefits and the relationships in terms of dependence or resources between the W Transboundary Biosphere Reserve (WTBR) in Benin and adjacent communities, over the period from 2000 to 2017. The methodological approach included a survey of opinions and incomes conducted among 340 households. The statistical analyses included logistic regressions and covariance analysis to assess the relationships between

residents and the WTBR and their variation over time and space, followed by generalized linear regressions to assess the monetary and non-monetary contributions of the WTBR to the incomes of resident households. The results revealed their dependence on the reserve, particularly for agricultural and grazing land. These relationships varied significantly according to geographical locations (municipality, distance) and were sometimes strong even for households living at a considerable distance from the WTBR. The contribution of the reserve to annual household incomes (from May of year n-1 to April of year n) and cash flows decreased over time to only 3.02% for the 2016-2017 crop year. Furthermore, the results highlight land tenure (agricultural land) and transhumance (rangelands) as issues common to all residents regardless of their geographical location. In the current context of

weakening ties and poor economic incentives, households living in or near the WTBR may, at best, lose their motivation to counter internal and external threats to conservation and, at worst, become a threat to conservation themselves. There is a huge and deep work for all stakeholders to improve the role of natural resources in human development.

Keywords: income, dependence, W Transboundary Biosphere Reserve (WTBR), protected area, governance,

Women's Enterprise and Empowerment helps to foster tolerance for the African elephants (*Loxodonta africana*) in Sagalla, Taita Taveta, Kenya

Grace Wairimu, Esther Serem and Lucy King Save The Elephants Corresponding author email address: <u>esther@savetheelephants.org</u>

Abstract

Small-scale, subsistence farmers living with elephants face immense challenges: physical risk, food insecurity, sleep deprivation, stress, malnutrition and declining income due to crop raids and the growing threat of climate change affecting rainfall patterns adding further to the poverty trap. Faced with these realities and often unable to move, farmers and women, in particular, have to think differently about their options of generating an income within an elephant-inhabited zone resulting in the overexploitation of natural resources. In Mwakoma village, women rely on crop farming as the primary source of income for their families. Women feel the impact of human-elephant conflict and prolonged drought as they mainly depend on natural resources for food, fuel and water. Continuous exploitation of the environment for fuel and food leads to further loss of biodiversity important to elephants. To mitigate this, Save the Elephants constructed a hub for women from this village to encourage the pursuit of a diverse set of elephant-friendly income-generating activities to increase their financial resilience. Our discussions will introduce the process, attitudes, and lessons learned from constructing a women's enterprise centre in the Sagalla community. The study shows how this innovative long-term safe space for women has encouraged women to engage in new income streams, which promotes the retention of the traditional values of the Taita people. We hope our case studies can serve as examples for scaling across Kenya to engender better elephant tolerance.

Keywords: Climate change, enterprises, human elephant conflict, food insecurity, women empowerment

Sub – theme: Use of Natural Capital Systems and Payment for Ecosystem Service for Socio-Economic Benefits

Implementing Payment for Ecosystem Services Scheme in Kenya: The Case of Lake Naivasha Basin.

Weru, Sammy M.

The University of Nairobi, Center for Advanced Studies in Environmental Law and Policy, P.O. Box 1939-20117 Naivasha, Kenya

Corresponding author email address: werus.mar@gmail.com

Abstract

Lake Naivasha Basin (LNB) is located in Nakuru and Nyandarua counties in the Republic of Kenya. It is an important ecosystem to the economy of Kenya, consistently contributing upwards of 1% of national Gross Domestic Production. However, this landscape is continuously and rapidly degrading due to intensive land use practices and land fragmentation in spite of the existence of various natural resource management policies in Kenya. The promotion of Payment for Ecosystem Services (PES) as a policy option to foster ecosystems sustainability by increasing the capacity of government authorities and local communities in Kenya to conserve riparian and forest ecosystems so as to reduce the vulnerability of dependent communities and production enterprises to the observed and anticipated effects of climate change is implied in the key environmental and natural resources policies in Kenya. I examined whether the Lake Naivasha Basin Payment for Ecosystem Services (LNB-PES)

scheme embodied the critical characteristics of an effective PES mechanism and if it achieved the desired ecological and livelihood results. A total of 1,191 heads of households and 11 key informants were interviewed for this study. The study results indicate that the LNB-PES scheme had some functional and conceptual inadequacies although it achieved remarkable adoption and compliance by participating farmers. Based on these results, it is recommended that a new PES scheme with a conditionalities enforcement mechanism be initiated for the LNB with a view to informing the mainstreaming of the concept of enforceable PES in the existing policy framework, the development of a national or basin-level PES policy, and, support watershed restoration and climate change adaptation through provision of forest technical extension services to land owners for the creation of woodlots and other watershed protection initiatives at farm level.

Keywords: Ecosystems goods and services, payment for ecosystem services, watershed protection, policy, land degradation, land use, climate change

Dakatcha woodland, Kilifi County, Kenya ecosystem service assessment

Paul K. Muoria¹, Paul Gacheru², Paul Matiku², Edwin Utumbi² and Dickens Odeny³. ¹Kenyatta University ²Nature Kenya ³National Museums of Kenya Corresponding author email address: <u>species@naturekenya.org</u>

Abstract

Dakatcha Woodland Important Bird Area/Key Biodiversity Area in Kilifi County, Kenya, is a biodiversity hotspot only known global breeding site for the endemic, endangered Clarke's Weaver, and supports local community livelihoods. The site is a mosaic of forest, woodland, farmland, abandoned farmland, grassland and thicket – has been experiencing environmental degradation attributed to expansion of farming activities; extractive use of trees for charcoal making and production of house construction materials; and climate change. Detailed Ecosystem Services Assessment was carried out guided by Toolkit for Ecosystem Services Site-based Assessment (TESSA) estimating the value of ecosystem services provided by Dakatcha Woodland in 2021 and in two futures scenarios-(*Business As Usual and Conservation Scenerio*). Study results indicates that Dakatcha Woodland stores1 approximately 12Million Tons of Carbon supporting Climate regulation. Value of goods harvested (wild goods, water and cultivated crops) was worth KSh.1.8 Billion. Dakatcha woodland had multiple cultural values including ecotourism potential to generate KSh.107 million annually. Total value of Dakatcha Woodland ecosystem services was estimated to KSh.2.5 billion Kenya Shillings in 2021, and KSh.4.3 billion and 3.9 billion in the Business As Usual and Conservation Scenarios, respectively. This assessment recommends promotion of conservation scenario that balances socio-economic development with biodiversity conservation. For this to be achieved, there is need for investment in awareness creation and infrastructure development

Keywords: Biodiversity hotspot, carbon, community livelihoods, Dakatcha woodland, ecosystem service assessment

Posters

Hippopotamus suitable habitat analyze in the pendjari biosphere reserve using remote sensing and GIS tools

G.R.M. Adounke^{1*}, C.A.M.S. Djagoun¹, G.N. Kpéra^{1&2}, B.D. Kassa¹, Lippai³ C

¹Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01 BP 526 LEA-FSA, Cotonou, Benin

²National Institute of Agricultural Research of Benin (INRAB), 01 BP2359, Cotonou, Benin

³PO Box 630, Betty's Bay, Western Cape 7141, South Africa

Corresponding author email address: gadounke@gmail.com

Abstract

Common hippopotamus is less widely distributed and typically occurs at low densities in West Africa. Although founding in many West African nations, overall population sizes tend to be much smaller, either because of less available habitat or the higher density of human populations. Thus, habitat loss and conflict with agricultural development and farming are a major problem for the species conservation in many countries as in Benin country. Our project aims to carryout habitat suitability analysis of hippopotamus in the Pendjari Biosphere Reserve Mixed approaches based on remote sensing and GIS were employed to map the suitable habitat sites of hippopotamus in the Pendjari Biosphere Reserve. The major Software that was used is: ENVI 4.7 to classify land use/land cover and ArcGIS 10.4.1 to produce thematic maps based on their particular criteria. Data indicated that, the hippopotamus suitable habitat including grass, shrub and wood savannah, represent 91,90% (4640,99km2) of the overall land cover against only 8,1% as unsuitable habitat. In the area of high competition with others herbivorous, the grass productivity of the suitable habitat need to be assessed in order to determine the capacity of charge of the Reserve.

Keywords: Hippopotamus benefit, suitable habitat, Positive perception, grassland, Savannah

Key Biodiversity Areas: Preserving Wildlife Diversity for a Sustainable Future

Conference Subtheme: Wildlife habitat restoration and connectivity

Paul Gacheru, Joshua Sese and James Mutunga, Corresponding author email address: <u>cpo2@naturekenya.org</u>

Abstract

Key Biodiversity Areas are sites recognized globally that contribute to significantly to the persistence of biodiversity. Identification of these sites follow a scientifically defensible criterion that encompasses all species from all taxonomic groups. Kenya has 68 Key Biodiversity Areas identified on the basis of birds. Annually these sites are assessed using Basic Monitoring protocol which determines the STATE, PRESSURE, and RESPONSES. Since 2004 to date, Basic Monitoring has been carried in Kenya KBAs one of the long-term monitoring schemes providing useful data for policy influence and decision making. Overall results show, PRESSURE on sites have been Mounting, RESPONSES, Reducing and STATE of the sites being relatively Stable. Informed by these results, use of the Key Biodiversity Areas approach serve as valuable tool for setting conservation priorities, establishing protected areas, and guiding land-use planning. Application of the KBAs approach, can contribute to secure a sustainable future for wildlife and ensuring the long-term health and resilience of our ecosystems.

Climate change vulnerability assessment of communities adjacent to Diani Chale Marine Reserve, Kwale County, Kenya

Marvin Osumba¹, Judith Nyunja², James Kairo³, Dan Olago¹ and Thuita Thenya¹ ¹Department of Earth and Climate Sciences, University of Nairobi ²Wildlife Research and Training Institute ³Kenya Marine and Fisheries Research Institute Corresponding author email address: <u>osumbamarvin@gmail.com</u>

Abstract

Kenya has been in the frontline in the conservation of marine resources through establishment of Marine Protected Areas (MPAs) and Joint Co-managed Marine Areas (JCMMA). The focus of the study was Diani-Chale Marine Reserve (DCMR) and adjacent areas. Though established as an MPA in 1995, management of DCMR has not been operationalized to date, and the study lay a foundation for establishment of a climatesmart co-management plan. The reserve's marine ecosystems are the live line of the communities in the area, providing tangible and intangible benefits to the community, in form of fisheries, wood products, tourism and shoreline protection. The study aimed to comprehensively assess the vulnerability of communities adjacent to the Diani Chale Marine Reserve to climate change impacts, recognizing the intricate interplay between ecological, socio-economic, and marine resourceuse. The research integrated rapid appraisal approaches to evaluate vulnerability from multiple dimensions - socioeconomic and environmental stressors. Socio-economic indicators, including income levels, education, and access

to savings and credits were utilized to gauge community adaptive capacity. Qualitative data was derived from focus group discussions and interviews. Vulnerability index was developed using the weighted mean method. Findings reveal that communities adjacent to the marine reserve are exposed to climate-related risks, particularly those linked to drought, rising temperatures and changes in rainy seasons. The overall average vulnerability index of the community is 0.49 implying a moderately vulnerable community. Vulnerability indices also show a significant difference between gender and across the age groups, (p>0.05). These results demonstrate that socioeconomic constraints hinder adaptive capacity, highlighting the need for targeted interventions that are gender-sensitive and age-specific. Such efforts should focus on education, capacity building and alternative income generating activities as well as marine resources conservation initiatives so as to bridge the gap between the changing natural environment, ecological systems and communities.

Keywords: Marine protected areas, joint co-managed marine areas, climate change, vulnerability, DCMR, Kenya

Morphometric characterization of Swallowtail butterfly, Papilio nireus Linnaeus, 1758 (Lepidoptera: Papilionidae) on wild citrus in Kenya

Oliver C. Genga^{1,2}, Namikoye E. Samita², Ruth Kahuthia-Gathu² and Esther N. Kioko¹ ¹Department of Zoology, National Museums of Kenya, P.O Box 40658-00100, Nairobi Kenya ²Department of Agricultural Science and Technology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya Corresponding author email address: cramswelgenga@gmail.com

Abstract

African blue-banded swallowtail butterfly, *Papilio nireus* Linnaeus, 1758 is a common species with a wide range of distribution in Sub-Saharan Africa. Its morphology reared on wild citrus species (Rutaceae), *Clausena anisata* and *Toddalia asiatica* are

studied in Taita Hills, Kenya for the first time. The morphological characters of various developmental stages are described. The effects of the host plants on the size of the eggs, length of larval instars, pupae, and adult tibia are illustrated.

Keywords: Morphology, developmental stages, Swallowtail butterfly, wild citrus, Sub-Saharan Africa

Role of Management Planning in Protected Areas Management - A case study of Lake Elementeita Wildlife Sanctuary

Lillian Ajuoga Kenya Wildlife Service Corresponding author email address: lajuoga@kws.go.ke

Abstract

Protected areas play a major role in conserving species and ecosystems that help us confront environmental and societal challenges such as climate change, food and water security. In md 2014 some 15.4% of the terrestrial surface of Earth and 3.4% of the global ocean area, which include 8.4% of marine areas under national jurisdiction, had been officially recognized as protected areas (UNEP-WCMC 2014). Protected areas in Africa occupy slightly over 2 million sq Km or 7% of the continent's 30 million sq Km. In Kenya, about 8% of the total land mass is protected area for wildlife conservation. The Kenya Wildlife Service is committed to the formulation of management plans for protected areas under its jurisdiction. Management plans prescribe actions intended to maintain the ecological integrity of the protected areas. They are important instruments in which all the ingredients for active management are described. Management planning is provided for in the Wildlife Conservation and Management Act (WCMA), 2013. The Wildlife Act states that no development shall be approved in a protected area without an approved management plan. This necessitates that for the organization to undertake developments in the protected areas or to lease out sites for development a management plan should be in place to guide such developments. Lake Elementaita Wildlife Sanctuary is a site that is internationally recognized due to its exceptional conservation values. Lake Elementaita is part of the formation of the Great Gregory Rift Valley, listed together with lakes Nakuru and Bogoria as the Kenya Lakes System in the Great Rift Valley World Heritage

Site by UNESCO in 2011, it is a Ramsar site Number 1498 (05-09-2005), IBA KE046 (1999) and a National Wildlife Sanctuary (2010). The management planning process for Lake Elementaita Wildlife Sanctuary Ecosystem started way back in 2010 and has since stalled twice. Last year, Kenya Wildlife Service revived the plan development and this year in the month of August, the plan was finally completed and validated. The plan area comprise the Ramsar designated site and it is envisaged that by conserving the site, the site will maintain the values for which it was designated. The management plan identified key species of conservation concerns such as the Great White Pelicans-CMS, Appendix I, lesser flamingo- IUCN, Near Threatened (NT), CITES, Appendix II, CMS Appendix II and the Nubian, IUCN, Appendix 1. Despite its international status, the site faces the following threats; poaching, fires, climate effect, invasive species, diseases, illegal logging, charcoal burning and human encroachment among others. The management plan incorporated activities that had been recommended during operationalization of the site, last year (2022). With the operationalization of the site and implementation of activities meant to address the above threats, the waterfowls have returned back to Lake Elementaita and there is increased visitation to the site. The Chinese visitors have become popular with the site. Many researchers have also developed interest in the site. With the fencing of the Sanctuary and the established KWS outpost at the site, Illegal activities have been controlled. Lake Elementaita has become the gem that it was meant to be.

Using SCR models to estimate the Population and survival of the African Lion (*Panthera leo melanochaita*) within the Meru National Park (MNP), Kenya in relation to lion translocation as a management tool.

K. Kariuki^{1,3}, L. Narisha^{1,2}, G.R. de Snoo^{1,4}, L.D. Bertola^{5,6}, F. Lesilau², C. Ngweno⁷ and H.H. de longh^{1,3,6}

¹ Institute of Environmental Sciences (CML), Leiden, Netherlands,

²Kenya Wildlife Service, Nairobi, Kenya,

³Evolutionary Ecology Research Group, Department of Biology, University of Antwerp, Belgium,

⁴Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands,

⁵Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark

⁶Leo Foundation

⁷Born Free Foundation, Kenya.

Corresponding author email address: kennedyolekariuki@gmail.com

Abstract

The African lion (*Panthera leo*) is estimated to have experienced a dramatic decline in population and range over the last century. Moreover, the greatest declines are likely occurring in remote wilderness areas where it is particularly challenging to acquire reliable lion population estimates. We therefore used spatial capture recapture (SCR) data collected in the Meru Conservation Area (MCA) between 2016 to 2019 to estimate lion abundance and density in an effort to ultimately understand how different factors influence the survival of lions and develop a Population Viability Analysis of lions within the MCA. More specifically, we assessed how different demographic, environmental, and management factors (such as translocation of lions as a human-lion conflict management tool), affect lion survival within the MCA. Our research aims to get an in-depth understanding of the population structure and survival of lions within the MCA, while highlighting the value of robust capture recapture models in order to demonstrate how rigorous field methods combined with robust analyses can produce reliable population estimates within remote wilderness conservation areas such as the MCA.

Keywords: Demography, population, Spatial Capture-Recapture (SCR), translocation.

Application of space technology solutions in wildlife conservation in Kenya

Peter Hongo¹, Wycliffe Mutero², Linus Kariuki³ ¹Wildlife Research and Training Institute ²International Fund for Animal Welfare ³Kenya Wildlife Service Corresponding author email address: phongo@wrti.go.ke

Abstract

The challenges facing wildlife conservation in Kenya are many and varied. They include ecological and wetlands degradation, climate change, forest depletion, tourism market volatility, land cover/land use change, human wildlife conflict brought by human population explosion and land fragmentation in areas where communities co-exist with wildlife. These challenges call for ecological monitoring to reveal the hidden truth, the behaviors, relationships and patterns among the existing things. Ecological monitoring is critical in the management of wildlife populations for conservation reasons. Modern management dictates that prudent decisions be based on scientific information. This scientific information can be gathered by use of Earth observation. Data gathering takes time, effort, resources and sometimes data is rarely available in the quality required. Incomplete and inaccurate data can be dangerous in making decisions. Different space technology techniques can be used remotely to gather data for wildlife conservation. Some

of the techniques applied in Kenya include wildlife collaring for monitoring wildlife movements, location and behavior; camera traps to gather data with little or no interference. Others include video GPS in aerial wildlife census to enhance quality of wildlife census in terms of accuracy in numbers since video GPS creates location-based video that allow Scientists to verify the numbers afterwards. Another technology is the use of Unmanned Aerial Vehicle which has cost saving potential in data gathering and monitoring of protected areas. UAV helps to reduce illegal wildlife activities such as poaching and illegal hunting. The use of big data is a technology that involves the use of community in quantitative data gathering using smart phones to facilitate wildlife management. The best technology is often the one you already have, know how to use, can maintain and can afford. Lastly the use of GIS and Remote Sensing in data gathering remotely and data analysis.

Keywords: Space technology solutions; wildlife collaring; Camera traps; Unmanned Aerial Vehicle; Big data; GIS and Remote Sensing.

Status of the Ishaqbini Hirola Sanctuary 2012 – 2023

Ahmed Maalim¹ & Dr. Juliet King² ¹Hirola Sanctuary ²Northern Rangelands Trust Corresponding author email address: manager@ishaqbiniconservancy.org

Abstract

Ishaqbini Hirola Community Conservancy was formed in 2007 by the communities of Hara, Korisa, Kotile and Abalatiro locations. Ishagbini aim is conservation and protection of the world's most critically endangered Hirola antelope, Beatragus hunteri and to improve the livelihoods of the local communities. The conservancy covers approximately 68,000 hectares of community land where wildlife conservation is promoted as a land-use alongside traditional pastoralist livelihoods. The global population of hirola is estimated to be less than 500 individuals, all of which are found in Kenya. When Ishaqbini was first established observations and data gathered by conservancy rangers and Northern Rangelands Trust (NRT), highlighted the vulnerability of the hirola population to poaching and predation. As a result, Ishaqbini and NRT with the support of KWS established a 2,700-hectare predator-proof fenced hirola Sanctuary in 2012 with the aim of providing a secure breeding population of hirola in the absence of predation, poaching

and competition with livestock. The population of hirola in the Sanctuary increased from initial 48 in 2012 to approximately 140 by end of 2020, an average annual growth rate of 15%, and representing between 25-30% of global population. In 2016, Ishaqbini faced severe drought, resulting in deaths of hirola, efforts to supplement feed were not successful. In late 2020, Ishaqbini faced another severe drought. In early 2021, a decision was made to release hirola from the sanctuary, which had reached carrying capacity. Approximately 70 hirola were released into the wider conservancy, 5 of which were collared; within 9 months of release, 3 of the 5 collared hirola (60%) had been killed by predators. The 2021 drought led to further deaths of wildlife, however, by end of 2021 hirola were successfully feeding on supplement feed and no further deaths occurred. The estimated hirola population in the sanctuary in 2023 is 45-50 animals.

Keywords: <u>Community</u>, conservancy, Hirola antelope, Hirola Sanctuary, population recovery, breeding population, <u>global</u> population, drought, supplementary feeding, predation/poaching.

The Coexistence Co-op: reducing the threat of poisoning through community-based trainings

Martin Odino¹, Darcy Ogada¹, Glen Behr² and Alayne Cotterill² ¹The Peregrine Fund-Africa, Nairobi, Kenya ²Lion Landscapes, Nanyuki, Kenya Corresponding author email address: ogada.darcy@peregrinefund.org

Abstract

The use of poisons, typically highly toxic pesticides, to kill wildlife is a global problem. Human-wildlife conflict is widespread and often is a root cause of wildlife poisoning. In Africa's pastoral areas conflict between livestock farmers and large predators results in retaliatory poisoning when lions, hyenas, or leopards kill livestock. Remaining carcasses are laced with pesticide to kill predators, but endangered vultures and eagles are the most impacted. Since 2018 the Coexistence Co-op, a collaboration between raptor and lion NGOs in northern Kenya, has undertaken a training and conflict management programme to reduce livestock losses to carnivores and the resultant use of poisons to kill carnivores. Our community training programme relies on a two-fold approach: 1) improving livestock husbandry and building predator-proof bomas (livestock corrals), and 2) education about the dangers of using poisons to kill wildlife. We conduct 1-day trainings involving 15 people that are hands-on and quality-focused. We have conducted 350 trainings involving over 4800 people who have built 818 new predator-proof bomas. These bomas, built and financed by trainees, have been 92% effective in reducing nighttime carnivore attacks. Trainees have intervened 52 times to prevent the poisoning of 208 animals including lions, vultures, hyenas, hippos and dogs. The most significant changes in human behavior have been: 1) building predator-proof bomas, 2) proper disposal of suspected poisoned carcasses, and 3) increased knowledge about human safety and use of protective gear when handling pesticides. Our approach strengthens community capacity, as well as ownership and responsibility towards the husbandry of their livestock and the health of their environment.

Evidence of widespread declines in Kenya's raptor populations over a 40-year period

Darcy Ogada^{1,2}, Munir Z. Virani^{1,2}, Jean Marc Thiollay³, Corinne J. Kendall^{4,5}, Simon Thomsett⁶, Martin Odino^{1,2}, Shiv Kapila⁶, Teeku Patel⁷, Peter Wairasho², Leah Dunn¹ and Phil Shaw⁸

¹The Peregrine Fund, 5668 W. Flying Hawk Lane, Boise, ID, USA

²National Museums of Kenya, P.O. Box 40658-00100, Nairobi, Kenya

³2 rue de la Rivière,10220 Rouilly Sacey, France

⁴North Carolina Zoo, Asheboro NC, USA

⁵Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA

⁶The Kenya Bird of Prey Trust, P.O. Box 883, 20117, Naivasha, Kenya

⁷Sokomoto Images, P.O. Box 2269-00606 Nairobi, Kenya

⁸Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK

Corresponding author email address: ogada.darcy@peregrinefund.org

Abstract

Kenya's wildlife has been declining substantially for decades, due to rapid human population growth and its associated impacts on natural habitats. Predators and scavengers are particularly sensitive to anthropogenic pressures, and their changing status has corresponding impacts on the ecosystem services they provide. To estimate rates of change in Kenya's raptor populations we compared linear encounter rates (individuals 100 km⁻¹) recorded during road surveys conducted in 1970–1977 and 2003–2020. Encounter rates for 19 out of 22 species had fallen, by a median of 70% among species showing a significant or near-significant change. No species had increased significantly. Declines occurred among all vulture and large eagle species, and were especially pronounced among once-common small and medium-sized raptors. Our findings demonstrate the importance of protected areas (PAs) for Kenya's remaining raptor populations. Median encounter rate for vultures and large eagles had dropped by 23% within PAs and by 76% in unprotected areas. Smaller species showed divergent trends in relation to PA status, their median encounter rate increasing by 104% within PAs while declining by 85% elsewhere. Based on projected declines over three generation lengths, 45% of the species examined would qualify as nationally Endangered or Critically Endangered. Key threats include electrocution/ collision with energy infrastructure, deliberate and incidental poisoning, persecution and impacts associated with habitat degradation. Kenya's raptor declines could be reversed through enhanced management of PAs, mitigation of specific threats and the implementation of species recovery plans; all requiring steadfast government commitment and close collaboration with conservation stakeholders.

Population Dynamics and Conservation of the Critically Endangered Pancake Tortoise (*Malacochersus tornieri*) in Northern Kenya

Dominic Maringa ¹,Timothy Kaaria ¹, Patrick Malonza³, Victor Wasonga ³, Francis Kobia ¹, Hannah Mungai ¹, Sumpere Toki ¹, John Logeme ¹, Mathew Mutinda ³, Cyrus Kisio ⁵, Marc Dupuis-Desormeaux ⁴

¹Lewa Wildlife Conservancy, Meru County, Kenya

²National Museums of Kenya, Nairobi, Kenya

³Kenya Wildlife Service, Nairobi, Kenya

⁴Turtle Survival Alliance

⁵II Ngwesi Community Conservancy, Laikipia County, Kenya

Corresponding authors email address: dominic.maringa@lewa.org

Abstract

The pancake tortoise (Malacochersus tornieri) is a critically endangered species with few individuals remaining worldwide. This is attributed to habitat degradation, illegal pet trade and negative cultural believes that poses a significant threat to their survival. The current known range is in the arid regions of East Africa, primarily in Kenya and Tanzania. In 2019, we discovered a population of 7 pancake tortoises on Lewa -Borana Landscape (LBL) which prompted further investigation of their existence within their conjusies areas and Northern Kenya conservancies. Since this species inhabit specific rock crevices, we modelled the rock geomorphologies to identify their prime habitats of kopjes of Precambrian bedrock with Acacia-Commiphora bushland and thickets. This acted as a guide where we systematically searched their physical presence in these specific rock crevices using spotlights and retrieval sticks. A majority were adult (81.7%) and the sex was skewed towards female. The average plastron and carapace length were 137.86mm and 140.18mm for male and females

respectively. Average weight of an adults, sub adults, juveniles and hatchling were 369g, 419g, 381g, 343g respectively. We also examined their physical characteristics, including oral cavity and integuments to determine their health status. Scute anomalies were documented to monitor shell condition and cloacal swabs were taken for future genetic diversity and pathogen analysis. The results indicated the presence of a healthy population of 186 individuals in the region mostly occurring within lower altitude ranging from 894m to 1689m including the community conservancies in the region. The study reinforces the pivotal role of the pancake tortoise within the unique rocky ecosystems of Northern Kenyan. It also emphasizes the gravity of the threats it faces, particularly habitat degradation and illegal trade. We recommend further studies in the greater parts of northern Kenya to further understand pancake tortoise population, their genetic diversity, dispersal and their evolutionary history.

Keywords: Genetic diversity, contiguous areas, habitat degradation

The effect of habitat type on population distribution and abundance of Rothschild's giraffe (*Giraffa Camelopardalis rothschildi*) in Ruma National Park and Mwea National Reserve in Kenya

George Njagi Gathuku¹, David O. Chiawo², Charles M. Warui³, Cecilia M. Gichuki⁴ and Innocent .O. Ngare⁵,

¹ Wildlife Clubs of Kenya

² Strathmore University

³ Muranga University of Science and Technology

⁴ Kenyatta University

Corresponding authors email address: njagi.gathuku@gmail.com

Abstract

The Rothschild's giraffe is currently listed as vulnerable by the International Union for Conservation of Nature (IUCN) attributed to the loss of habitat due to human activities. This study examined the effect of habitat type on population structure and distribution of Rothschild's giraffe in Ruma National Park (RNP) and Mwea National Reserve (MNR) in Kenya. The study employed road transects to collect data on the number, age class and sex distribution in three habitat types; open, medium and closed. Data was collected along three road transects of equal lengths measuring 14.2 km in each site (RNP and MNR) for comparison. A driving speed of 20 km per hour was maintained along each transect for standardization of survey effort and a maximum giraffe detection rate. Photographic capture of the coat patterns of the right side of all the giraffes sighted within 500 m from the transect was done for identification of age classes. The field visits were replicated 12 times for each transect giving 36 replications for each site spread equally through wet and dry seasons from March 2017 to November 2018. The effect of habitat type on population structure and

distribution was analysed using ANOVA and Tukey HSD to test for significant differences. Results show, habitat type had a highly significant effect on the distribution of giraffes in Ruma, (F-106.2, N = 1723, DF=22 P<0.001) and significant effect in MNR, (F-9.939, n=482, DF=22 P<0.05). T-test was used to compare the mean population size of giraffe across the wet and dry seasons. The dry seasonality shows contrasting effect on giraffe distribution between MNR and RNP, (t= 2.6071, df = 2, P<0.05) and (t=14.178, df = 2, P<0.001) respectively. The coat pattern analysis for age class identification was done using WildID software. The findings indicated that MNR had more males 57.1% to females 42.9% compared to RNP that registered more females 57.6%. Habitat type had a significant effect on the distribution of giraffes. The giraffe population showed a preference for medium habitat types. The findings are key for the management of habitat quality for giraffe populations at the interface where conservation areas overlap with human land use

Keywords: Giraffe conservation, population distribution, Rothschild's giraffe

Population status and trends of the savanna Elephant (*Loxodonta africana*) in the Aberdares forest ecosystem

Vasco Nyaga¹, Sospeter Kiamb¹, Shadrack Ngene¹, Patrick Omondi¹, Linus Kariuki³ and Hilde Vanleeuwe²; ¹Wildlife Research and Training Institute, P.O. Box 842, 20117 – Naivasha

²Wildlilfe Conservation Society, East-Africa Program, 2300 Southern Boulevard. Bronx, New York 10460;

³Kenya Wildlife Service, P.O. Box 40241, 00100 Nairobi

Abstract

The spatial distribution of African elephants has been diminishing owing to anthropogenic expansion. Kenya, characterized by atleast 3% forest cover may accommodate more than 20% of the elephant population. Aberdare Forest Ecosystem (AFE) encompasses Aberdare National Park (765.8Km²) and a forest reserve (1013Km²). This study embraced line transects to estimate elephant populations and map human threats. A total of 56 wildlife sightings (248 animals) and 314 elephant dung piles in line transects were analyzed out of 1103 recorded. There was a mean dung decay rate of 43.52 days (SE 3.46), the density estimate for the Aberdares landscape was 2.3 elephants/km² (95% CI 1.61 - 3.28 elephants / km²) with a percent coefficient of variation of 18.32. This gives an overall abundance estimate of 4,019 (95% CI 2,813 – 5,741), which based on a one-sided z-test is not significantly lower at the 5% level than the estimated elephant density of 2.63 elephants / km² and abundance of 4,593 for the 2017 survey. In the 2017 survey, the Elephant density was 2.2/Km² (CV% 12.87) or 3939 (95%CL: 3063 - 5066) elephants. Previously, there was an elephant density at 2.40/Km² or 1,840 elephants (%CV25.05) in the Aberdare National Park (767 Km²) and 2.56/Km² or 1,700 elephants (%CV 27.76) in parts of the AFE outside the National Park (663 Km²) in 2005.

Keywords: Distribution, Ecosystem, Threats, Estimate, Density

Conference Sponsors

Main Sponsor

REPUBLIC OF KENYA

Other Sponsors

Secretariat Wildlife Research and Training Institute, Naivasha - Kenya. Mobile Number: +254 797 169 435, +254 726 490340 Email: wrtiscicon2023@wrti.go.ke Website: www.wrti.go.ke